湖南省湘潭市2026届数学高二上期末质量检测模拟试题含解析_第1页
湖南省湘潭市2026届数学高二上期末质量检测模拟试题含解析_第2页
湖南省湘潭市2026届数学高二上期末质量检测模拟试题含解析_第3页
湖南省湘潭市2026届数学高二上期末质量检测模拟试题含解析_第4页
湖南省湘潭市2026届数学高二上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省湘潭市2026届数学高二上期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”2.已知,,,其中,,,则()A. B.C. D.3.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2 B.3C.6 D.94.已知,则方程与在同一坐标系内对应的图形编号可能是()A.①④ B.②③C.①② D.③④5.已知四面体,所有棱长均为2,点E,F分别为棱AB,CD的中点,则()A.1 B.2C.-1 D.-26.已知点是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则()A.与双曲线的实轴长相等B.的面积为C.双曲线的离心率为D.直线是双曲线的一条渐近线7.下列抛物线中,以点为焦点的是()A. B.C. D.8.某几何体的三视图如图所示,则其对应的几何体是A. B.C. D.9.如图,P是椭圆第一象限上一点,A,B,C是椭圆与坐标轴的交点,O为坐标原点,过A作AN平行于直线BP交y轴于N,直线CP交x轴于M,直线BP交x轴于E.现有下列三个式子:①;②;③.其中为定值的所有编号是()A.①③ B.②③C.①② D.①②③10.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣211.椭圆的左右两焦点分别为,,过垂直于x轴的直线交C于A,B两点,,则椭圆C的离心率是()A. B.C. D.12.设函数,则()A.4 B.5C.6 D.7二、填空题:本题共4小题,每小题5分,共20分。13.对某市“四城同创”活动中100名志愿者的年龄抽样调查统计后得到频率分布直方图(如图),但是年龄组为的数据不慎丢失,则依据此图可估计该市“四城同创”活动中志愿者年龄在的人数为________14.如图,在正四棱锥中,为棱PB的中点,为棱PD的中点,则棱锥与棱锥的体积之比为______15.已知数列的前项和.则数列的通项公式为_______.16.若和或都是假命题,则的范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直三棱柱中,、、、分别为中点,.(1)求证:平面(2)求二面角的余弦值18.(12分)如图,中,且,将沿中位线EF折起,使得,连结AB,AC,M为AC的中点.(1)证明:平面ABC;(2)求二面角的余弦值.19.(12分)已知函数的图像在(为自然对数的底数)处取得极值.(1)求实数的值;(2)若不等式在恒成立,求的取值范围.20.(12分)已知椭圆的左、右焦点分别为,,离心率为,过左焦点的直线l与椭圆C交于A,B两点,的周长为8(1)求椭圆C的标准方程;(2)如图,,是椭圆C的短轴端点,P是椭圆C上异于点,的动点,点Q满足,,求证与的面积之比为定值21.(12分)已知数列的前n项积,数列为等差数列,且,(1)求与的通项公式;(2)若,求数列的前n项和22.(10分)已知抛物线的焦点到准线的距离为,过点的直线与抛物线只有一个公共点.(1)求抛物线的方程;(2)求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.2、C【解析】先令函数,求导判断函数的单调性,并作出函数的图像,由函数的单调性判断,再由对称性可得.【详解】由,则,同理,,令,则,当;当,∴在上单调递减,单调递增,所以,即可得,又,,由图的对称性可知,.故选:C3、C【解析】利用抛物线的定义建立方程即可得到答案.【详解】设抛物线的焦点为F,由抛物线的定义知,即,解得.故选:C.【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.4、B【解析】结合椭圆、双曲线、抛物线的图像,分别对①②③④分析m、n的正负,即可得到答案.【详解】对于①:由双曲线的图像可知:;由抛物线的图像可知:同号,矛盾.故①错误;对于②:由双曲线的图像可知:;由抛物线的图像可知:异号,符合要求.故②成立;对于③:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,符合要求.故③成立;对于④:由椭圆的图像可知:;由抛物线的图像可知:同号,且抛物线的焦点在x轴上,矛盾.故④错误;故选:B5、D【解析】在四面体中,取定一组基底向量,表示出,,再借助空间向量数量积计算作答.【详解】四面体所有棱长均为2,则向量不共面,两两夹角都为,则,因点E,F分别为棱AB,CD的中点,则,,,所以.故选:D6、B【解析】由题意及双曲线的定义可得,的值,进而可得A不正确,计算可判断B正确,再求出,的关系可得C不正确,求出,的关系,进而求出渐近线的方程,可得D不正确【详解】因为,又由题意及双曲线的定义可得:,则,,所以A不正确;因为在以为直径的圆上,所以,所以,所以B正确;在△中,由勾股定理可得,即,所以离心率,所以C不正确;由C的分析可知:,故,所以渐近线的方程为,即,所以D不正确;故选:B7、A【解析】由题意设出抛物线的方程,再结合焦点坐标即可求出抛物线的方程.【详解】∵抛物线为,∴可设抛物线方程为,∴即,∴抛物线方程为,故选:A.8、A【解析】根据三视图即可还原几何体.【详解】根据三视图,特别注意到三视图中对角线的位置关系,容易判断A正确.【点睛】本题主要考查了三视图,属于中档题.9、D【解析】根据斜率的公式,可以得到的值是定值,然后结合已知逐一判断即可.【详解】设,所以有,,因此,所以有,,,,,,故,,.故选:D【点睛】关键点睛:利用斜率公式得到之间的关系是解题的关键.10、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B11、C【解析】由题可得为等边三角形,可得,即得.【详解】∵过垂直于x轴的直线交椭圆C于A,B两点,,∴为等边三角形,由代入,可得,∴,所以,即,又,解得.故选:C.12、D【解析】求出函数的导数,将x=1代入即可求得答案.【详解】,故,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】首先根据频率分布直方图计算出年龄在的频率,从而可计算出年龄在的人数.【详解】年龄在的频率为,所以年龄在的人数为.故答案为:.14、【解析】根据图形可求出与棱锥的体积之比,即可求出结果【详解】如图所示:棱锥可看成正四棱锥减去四个小棱锥的体积得到,设正四棱锥的体积为,为PB的中点,为PD的中点,所以,而,同理,故棱锥的体积的为,即棱锥与棱锥的体积之比为故答案为:.15、【解析】根据公式求解即可.【详解】解:当时,当时,因为也适合此等式,所以.故答案为:16、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】(1)取中点,连接,根据直棱柱的特征,易知,再由、分别为的中点,根据中位线定理,可得,得到四边形为平行四边形,再利用线面平行的判定定理证明.(2)取的中点,连接,以为原点,、、分别为、、轴建立空间直角坐标系,则.,再分别求得平面和平面的一个法向量,利用面面角的向量公式求解.【详解】(1)证明:如图所示:取中点,连接,易知,、分别为的中点,∴,∴故四边形为平行四边形,∴,∵平面,平面,平面(2)取的中点,连接,以为原点,、、分别为、、轴建立如图所示的空间直角坐标系,如图所示:则∴,设平面的法向量为,则,即,取,得,易知平面的一个法向量为,∴,∴二面角的余弦值为【点睛】本题主要考查线面平行的判定定理和面面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18、(1)证明见解析(2)【解析】(1)由勾股定理以及等腰三角形的性质得出,,再由线面垂直的判定证明即可;(2)以点为坐标原点,建立空间直角坐标系,由向量法得出面面角.【小问1详解】设,则,,平面平面,连接,,,,,即又,平面ABC【小问2详解】,以点为坐标原点,建立如下图所示的空间直角坐标系设平面的法向量为,平面的法向量为,令,则同理可得,又二面角为钝角,故二面角的余弦值为.19、(1)(2)【解析】(1)由求得的值.(2)由分离常数,通过构造函数法,结合导数求得的取值范围.【小问1详解】因为,所以,因为函数的图像在点处取得极值,所以,,经检验,符合题意,所以;【小问2详解】由(1)知,,所以在恒成立,即对任意恒成立.令,则.设,易得是增函数,所以,所以,所以函数在上为增函数,则,所以.20、(1)(2)证明见解析【解析】(1)根据周长为8,求得a,再根据离心率求解;(2)方法一:设,,得到直线和直线的方程,联立求得Q的横坐标,根据在椭圆上,得到,然后代入Q的横坐标求解;方法二:设直线,的斜率分别为k,,点,,直线的方程为,与椭圆方程联立,求得点P横坐标,再由的直线方程联立,得到P,Q的横坐标的关系求解.【小问1详解】解:∵的周长为8,∴,即,∵离心率,∴,,∴椭圆C的标准方程为【小问2详解】方法一:设,则直线斜率,∵,∴直线斜率,∴直线的方程为:,同理直线的方程为:,联立上面两直线方程,消去y,得,∵在椭圆上,∴,即,∴,∴所以与的面积之比为定值4方法二:设直线,的斜率分别为k,,点,,则直线的方程为,∵,∴直线的方程为,将代入,得,∵P是椭圆上异于点,的点,∴,又∵,即,∴,即,由,得直线的方程为,联立得,∴所以与的面积之比为定值421、(1),.(2).【解析】(1)由已知得,,两式相除得,由已知得,求得数列的公差为,由等差数列的通项公式可求得;(2)运用错位相减法可求得.【小问1详解】解:因为数列的前n项积,所以,所以,两式相除得,因为数列为等差数列,且,,所以,即,所以数列的公差为,所以,所以,【小问2详解】解:由(1)得,所以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论