福建省三明市普通高中2026届高一上数学期末质量检测试题含解析_第1页
福建省三明市普通高中2026届高一上数学期末质量检测试题含解析_第2页
福建省三明市普通高中2026届高一上数学期末质量检测试题含解析_第3页
福建省三明市普通高中2026届高一上数学期末质量检测试题含解析_第4页
福建省三明市普通高中2026届高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省三明市普通高中2026届高一上数学期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}2.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.3.下列命题不正确的是()A.若,则的最大值为1 B.若,则的最小值为4C.若,则的最小值为1 D.若,则4.设全集,集合,则()A. B.C. D.5.已知函数且,则实数的取值范围为()A. B.C. D.6.已知函数,则A.最大值为2,且图象关于点对称B.周期为,且图象关于点对称C.最大值为2,且图象关于对称D.周期为,且图象关于点对称7.用函数表示函数和中的较大者,记为:,若,,则的大致图像为()A. B.C. D.8.已知a=4-5,b=log45,c=log0.45,则a,b,c的大小关系为()A.a>b>c B.c>b>aC.b>a>c D.c>a>b9.已知,均为正实数,且,则的最小值为A.20 B.24C.28 D.3210.是所在平面上的一点,满足,若,则的面积为()A.2 B.3C.4 D.8二、填空题:本大题共6小题,每小题5分,共30分。11.下列命题中,正确命题的序号为______①单位向量都相等;②若向量,满足,则;③向量就是有向线段;④模为的向量叫零向量;⑤向量,共线与向量意义是相同的12.若函数(,且)在上是减函数,则实数的取值范围是__________.13.已知,,,则的最大值为___________.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积为___________.15.已知函数的零点为,则,则______16.如图,在四棱锥中,平面平面,是边长为4的等边三角形,四边形是等腰梯形,,则四棱锥外接球的表面积是____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面向量.(1)求与的夹角的余弦值;(2)若向量与互相垂直,求实数的值.18.已知函数(1)若,求不等式的解集;(2)若,且,求的最小值19.已知函数是定义在区间上的奇函数,且.(1)求函数的解析式;(2)判断函数在区间上的单调性,并用函数单调性的定义证明.20.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数21.已知函数.(1)求在闭区间的最大值和最小值;(2)设函数对任意,有,且当时,.求在区间上的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.2、C【解析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程3、D【解析】选项A、B、C通过给定范围求解对应的值域即可判断正误,选项D通过移向做差,化简合并,即可判断.【详解】对于A,若,则,即的最大值为1,故A正确;对于B,若,则,当且仅当,即时取等号,所以最小值为4,故B正确;对于C,若,则,即的最小值为1,故C正确;对于D,∵,,∴,故D不正确故选:D.4、A【解析】根据补集定义计算【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题5、B【解析】易知函数为奇函数,且在R上为增函数,则可化为,则即可解得a的范围.【详解】函数,定义域为,满足,∴,令,∴,∴为奇函数,,∵函数,在均为增函数,∴在为增函数,∴在为增函数,∵为奇函数,∴在为增函数,∴,解得.故选:B.6、A【解析】,∵,∴,则的最大值为;∵,∴周期;当时,图象关于某一点对称,∴当,求出,即图象关于对称,故选A考点:三角函数的性质.7、A【解析】利用特殊值确定正确选项.【详解】依题意,,排除CD选项.,排除B选项.所以A选项正确.故选:A8、C【解析】根据指数函数、对数函数的单调性,判断的大致范围,即可比较大小.【详解】因为,且,故;又,故;又,故;故.故选:C.9、A【解析】分析:由已知条件构造基本不等式模型即可得出.详解:均为正实数,且,则当且仅当时取等号.的最小值为20.故选A.点睛:本题考查了基本不等式性质,“一正、二定、三相等”.10、A【解析】∵,∴,∴,且方向相同∴,∴.选A二、填空题:本大题共6小题,每小题5分,共30分。11、④⑤【解析】由向量中单位向量,向量相等、零向量和共线向量的定义进行判断,即可得出答案.【详解】对于①.单位向量方向不同时,不相等,故不正确.对于②.向量,满足时,若方向不同时,不相等,故不正确.对于③.有向线段是有方向的线段,向量是既有大小、又有方向的量.向量可以用有向线段来表示,二者不等同,故不正确,对于④.根据零向量的定义,正确.对于⑤.根据共线向量是方向相同或相反的向量,也叫平行向量,故正确.故答案为:④⑤12、【解析】根据分段函数的单调性,列出式子,进行求解即可.【详解】由题可知:函数在上是减函数所以,即故答案为:13、【解析】由题知,进而令,,再结合基本不等式求解即可.【详解】解:,当时取等,所以,故令,则,所以,当时,等号成立.所以的最大值为故答案为:14、【解析】计算出等边的边长,计算出由弧与所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形的边长为,则,解得,所以,由弧与所围成的弓形的面积为,所以该勒洛三角形的面积.故答案为:.15、2【解析】根据函数的单调性及零点存在定理即得.【详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.16、##【解析】先根据面面垂直,取△的外接圆圆心G,梯形的外接圆圆心F,分别过两点作对应平面的垂线,找到交点为外接球球心,再通过边长关系计算半径,代入球的表面积公式即得结果.【详解】如图,取的中点,的中点,连,,在上取点,使得,由是边长为4的等边三角形,四边形是等腰梯形,,可得,,即梯形的外接圆圆心为F,分别过点、作平面、平面的垂线,两垂线相交于点,显然点为四棱锥外接球的球心,由题可得,,,则四棱锥外接球的半径,故四棱锥外接球的表面积为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)由数量积公式,得夹角余弦值为;(2),所以。试题解析:(1)∵向量,∴.∴向量与的夹角的余弦值为.(2)∵向量与互相垂直,∴.又.∴.点睛:本题考查数量积的应用。数量积公式,学生要熟练掌握数量积公式的应用,能够转化到求夹角公式。两向量垂直,则数量积为零。本题为基础题型,考查公式的直接应用。18、(1)答案不唯一,具体见解析(2)【解析】(1)由,对分类讨论,判断与的大小,确定不等式的解集.(2)利用把用表示,代入表示为的函数,利用基本不等式可求.【详解】解:(1)因为,所以,由,得,即,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为;(2)因为,由已知,可得,∴,∵,∴,∴,当且仅当时取等号,所以的最小值为【点睛】本题考查一元二次不等式的解法,基本不等式的应用,考查分类讨论的思想,运算求解能力,属于中档题.19、(1)(2)增函数,证明见解析【解析】(1)又函数为奇函数可得,结合求得,即可得出答案;(2)令,利用作差法判断的大小,即可得出结论.【小问1详解】解:因为函数是定义在区间上的奇函数,所以,即,所以,又,所以,所以;【小问2详解】解:增函数,证明如下:令,则,因为,所以,,所以,即,所以函数在区间上递增.20、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论