版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市彭水县第一中学2026届高二上数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有这样一道题目:“戴氏善屠,日益功倍.初日屠五两,今三十日屠讫,向共屠几何?”其意思为:“有一个姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5两肉,共屠了30天,问一共屠了多少两肉?"在这个问题中,该屠夫前5天所屠肉的总两数为()A.35 B.75C.155 D.3152.已知实数成等比数列,则圆锥曲线的离心率为()A. B.2C.或2 D.或3.若椭圆的弦恰好被点平分,则所在的直线方程为()A. B.C. D.4.已知函数在定义域内单调递减,则实数的取值范围是()A. B.C. D.5.设,则是的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,则实数a的值为()A.﹣2 B.C.1 D.1或﹣27.在中,角,,所对的边分别为,,,若,则的形状为()A.锐角三角形 B.直角三角形C.钝角三角形 D.不确定8.已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为A.2 B.3C.4 D.59.方程表示的曲线为()A.抛物线与一条直线 B.上半抛物线(除去顶点)与一条直线C.抛物线与一条射线 D.上半抛物线(除去顶点)与一条射线10.如图,在四面体中,,,,分别为,,,的中点,则化简的结果为()A. B.C. D.11.已知等比数列{an}的前n项和为S,若,且,则S3等于()A.28 B.26C.28或-12 D.26或-1012.我国古代数学典籍《四元玉鉴》中有如下一段话:“河有汛,预差夫一千八百八十人筑堤,只云初日差六十五人,次日转多七人,今有三日连差三百人,问已差人几天,差人几何?”其大意为“官府陆续派遣1880人前往修筑堤坝,第一天派出65人,从第二天开始每天派出的人数比前一天多7人.已知最后三天一共派出了300人,则目前一共派出了多少天,派出了多少人?”()A.6天495人 B.7天602人C.8天716人 D.9天795人二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的顶点为坐标原点,焦点坐标是,则该抛物线的标准方程为___________14.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.15.若动直线分别与函数和的图像交于A,B两点,则的最小值为______16.已知方程的两根为和5,则不等式的解集是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角所对的边长分别为,是1和的等差中项(1)求角;(2)若的平分线交于点,且,求的面积18.(12分)已知等差数列满足,(1)求的通项公式;(2)若等比数列的前n项和为,且,,,求满足的n的最大值19.(12分)如图,在梯形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)点在线段含端点上运动,当点在什么位置时,平面与平面所成锐二面角最大,并求此时二面角的余弦值.20.(12分)如图,在平行四边形ABCD中,AB=1,BC=2,∠ABC=60°,四边形ACEF为正方形,且平面ABCD⊥平面ACEF(1)证明:AB⊥CF;(2)求点C到平面BEF距离;(3)求平面BEF与平面ADF夹角的正弦值21.(12分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围22.(10分)已知数列,,,为其前n项和,且满足.(1)求数列的通项公式;(2)设,求数列的前n项和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】构造等比数列模型,利用等比数列的前项和公式计算可得结果.【详解】由题意可得该屠夫每天屠的肉成等比数列,记首项为,公比为,前项和为,所以,,因此前5天所屠肉的总两数为.故选:C.【点睛】本题考查了等比数列模型,考查了等比数列的前项和公式,属于基础题.2、C【解析】根据成等比数列求得,再根据离心率计算公式即可求得结果.【详解】因为实数成等比数列,故可得,解得或;当时,表示焦点在轴上的椭圆,此时;当时,表示焦点在轴上的双曲线,此时.故选:C.3、D【解析】判断点M与椭圆的位置关系,再借助点差法求出直线AB的斜率即可计算作答.【详解】显然点椭圆内,设点,依题意,,两式相减得:,而弦恰好被点平分,即,则直线AB的斜率,直线AB:,即,所以所在的直线方程为.故选:D4、D【解析】由题意转化为,恒成立,参变分离后转化为,求函数的最大值,即可求解.【详解】函数的定义域是,,若函数在定义域内单调递减,即在恒成立,所以,恒成立,即设,,当时,函数取得最大值1,所以.故选:D5、B【解析】,,所以是必要不充分条件,故选B.考点:1.指、对数函数的性质;2.充分条件与必要条件.6、B【解析】由题意,利用两直线垂直的性质,两直线垂直时,一次项对应系数之积的和等于0,计算求得a的值【详解】∵直线l1:ax+2y=0与直线l2:2x+(2a+2)y+1=0垂直,∴a×2+2×(2a+2)=0,求得a=﹣,故选:B7、C【解析】由正弦定理得出,再由余弦定理得出,从而判断为钝角得出的形状.【详解】因为,所以,所以,所以的形状为钝角三角形.故选:C8、D【解析】抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.9、B【解析】化简得出或,由此可得出方程表示的曲线.【详解】由可得或,所以,方程表示的曲线为上半抛物线(除去顶点)与一条直线,故选:B.10、C【解析】根据向量的加法和数乘的几何意义,即可得到答案;【详解】故选:C11、C【解析】根据等比数列的通项公式列出方程求解,直接计算S3即可.【详解】由可得,即,所以,又,解得,所以,即,当时,,所以,当时,,所以,故选:C12、B【解析】根据题意,设每天派出的人数组成数列,可得数列是首项,公差数7的等差数列,解方程可得所求值【详解】解:设第天派出的人数为,则是以65为首项、7为公差的等差数列,且,,∴,,∴天则目前派出的人数为人,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据焦点坐标即可得到抛物线的标准方程【详解】因为抛物线的顶点为坐标原点,焦点坐标是,所以,解得,抛物线的标准方程为故答案为:14、【解析】分别以所在直线为轴,建立空间直角坐标系,设,则,,即异面直线A1M与DN所成角的大小是考点:异面直线所成的角15、【解析】利用导数求出与平行的曲线的切线,再利用两点间距离公式进行求解即可.【详解】设曲线的切点为,由,所以曲线的切线的斜率为,直线的斜率为,当切线与平行时,即,即切点为,当直线过切点时,有最小值,即,此时,解方程组:,,故答案为:【点睛】关键点睛:利用曲线的切线性质进行求解是解题的关键.16、【解析】根据根与系数的关系以及一元二次不等式的解法即可解出【详解】由题意可知,,解得,所以即为,解得或,所以不等式的解集是故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据是1和的等差中项得到,再利用正弦定理结合商数关系,两角和与差的三角函数化简得到求解;(2)由和求得b,c的关系,再结合余弦定理求解即可.【详解】(1)由已知得,在中,由正弦定理得,化简得,因为,所以,所以;(2)由正弦定理得,又,即,由余弦定理得,所以,所以【点睛】方法点睛:在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到18、(1)(2)10【解析】(1)设等差数列公差为d,根据已知条件列关于和d的方程组即可求解;(2)设等比数列公比为q,根据已知条件求出和q,根据等比数列求和公式即可求出,再解关于n的不等式即可.【小问1详解】由题意得,解得,∴【小问2详解】∵,,又,∴,公比,∴,令,得,令,所以n的最大值为1019、(1)证明见解析(2)点与点重合时,二面角的余弦值为【解析】(1)先利用平面几何知识和余弦定理得到及各边长度,利用线面平行的性质和判定定理得到线面垂直,再利用线线平行得到线面垂直;(2)建立空间直角坐标系,设,写出相关点的坐标,得到相关向量的坐标,利用平面的法向量夹角求出二面角的余弦值,再通过二次函数的最值进行求解.【小问1详解】证明:在梯形中,因为,,又因为,所以,,所以,即,解得,,所以,即.因为平面,平面,所以,而平面平面,所以平面.因为,所以平面.【小问2详解】解:分别以直线为轴,轴,轴建立如图所示的空间直角坐标系(如图所示),设,则,所以,设为平面的一个法向量,由得,取,则,又是平面的一个法向量,设平面与平面所成锐二面角为,所以因为,所以当时,有最小值为,所以点与点重合时,平面与平面所成二面角最大,此时二面角的余弦值为.20、(1)证明见解析;(2);(3).【解析】(1)利用余弦定理计算AC,再证明即可推理作答.(2)以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,借助空间向量计算点C到平面BEF的距离.(3)利用(2)中坐标系,用向量数量积计算两平面夹角余弦值,进而求解作答.小问1详解】在中,AB=1,BC=2,∠ABC=60°,由余弦定理得,,即,有,则,即,因平面ABCD⊥平面ACEF,平面平面,平面,于是得平面,又平面,所以.【小问2详解】因四边形ACEF为正方形,即,由(1)知两两垂直,以点A为原点,射线AB,AC,AF分别为x,y,z轴非负半轴建立空间直角坐标系,如图,,,设平面的一个法向量,则,令,得,而,于是得点C到平面BEF的距离,所以点C到平面BEF的距离为.【小问3详解】由(2)知,,设平面的一个法向量,则,令,得,,设平面BEF与平面ADF夹角为,,则有,,所以平面BEF与平面ADF夹角的正弦值为.【点睛】易错点睛:空间向量求二面角时,一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算21、(1)(2)【解析】(1)根据导数的运算法则,结合复合函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年广西经贸职业技术学院高职单招职业适应性考试模拟试题及答案详解
- 2026年福建商学院单招职业技能笔试备考试题及答案详解
- 2026年河北正定师范高等专科学校高职单招职业适应性测试备考试题及答案详解
- 2026年江苏海事职业技术学院高职单招职业适应性测试备考试题及答案详解
- 2026年佳木斯职业学院高职单招职业适应性测试备考试题及答案详解
- 2026年河北科技学院高职单招职业适应性测试模拟试题及答案详解
- 2026年嘉兴职业技术学院高职单招职业适应性考试备考试题及答案详解
- 2025年智能投影仪内容分发:流媒体与本地存储报告
- 2026年安徽城市管理职业学院高职单招职业适应性测试参考题库及答案详解
- 网络谣言的传播传播学研究
- java期末试卷(A)及答案
- 第三单元 文明与家园(教案) 2025-2026学年统编版道德与法治 九年级上册
- (2025年)老年人慢性静脉疾病诊治中国专家共识课件
- 宁夏石嘴山市惠农区第二中学2025-2026学年八年级上学期期末检测生物试卷(无答案)
- 2025浙江宁波农商发展集团有限公司招聘3人考试参考题库及答案1套
- 2025年1月福建省普通高中学业水平合格性考试语文试题(含答案详解)
- 2026商业地产马年新春年货节“金马迎春年货大集”活动策划方案【春节活动】
- 手术室院感课件
- 药剂科年度工作总结与未来规划报告
- 口腔护士种植课件
- 2025临沂市检察机关公开招聘聘用制书记员(47名)备考笔试试题及答案解析
评论
0/150
提交评论