2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题含解析_第1页
2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题含解析_第2页
2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题含解析_第3页
2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题含解析_第4页
2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届广东省广州市重点初中高一上数学期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.2.若,则的最小值为()A.4 B.3C.2 D.13.如图,三棱柱中,侧棱底面,底面三角形是正三角形,是中点,则下列叙述正确的是A.平面B.与是异面直线C.D.4.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德、牛顿并列为世界三大数学家,用其姓名命名的“高斯函数”为,其中表示不超过的最大整数,例如,已知函数,令函数,则的值域为()A.B.C.D.5.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则6.若,,,则a,b,c的大小关系是A. B.C. D.7.我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,如函数在区间上的图象的大致形状是()A. B.C. D.8.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.579.已知点是角终边上一点,则()A. B.C. D.10.若,则有()A.最大值 B.最小值C.最大值2 D.最小值2二、填空题:本大题共6小题,每小题5分,共30分。11.下列一组数据的分位数是___________.12.函数(且)的定义域为__________13._________.14.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧的长度为,则该勒洛三角形的面积是___________.15.若关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则关于x的不等式cx2+bx+a>0的解集是______16.已知幂函数经过点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的图象关于原点对称(1)求实数b的值;(2)若对任意的,有恒成立,求实数k的取值范围18.已知全集,求:(1);(2).19.已知函数的部分图象如下图所示.(1)求函数解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.20.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.21.已知.(1)化简;(2)若是第三象限角,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B2、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.3、D【解析】因为三棱柱A1B1C1-ABC中,侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以对于A,AC与AB夹角为60°,即两直线不垂直,所以AC不可能垂直于平面ABB1A1;故A错误;对于B,CC1与B1E都在平面CC1BB1中不平行,故相交;所以B错误;对于C,A1C1,B1E是异面直线;故C错误;对于D,因为几何体是三棱柱,并且侧棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中点,所以BB1⊥底面ABC,所以BB1⊥AE,AE⊥BC,得到AE⊥平面BCC1B1,所以AE⊥BB1;故选D.4、C【解析】先进行分离,然后结合指数函数与反比例函数性质求出的值域,结合已知定义即可求解【详解】解:因为,所以,所以,则的值域故选:C5、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.6、C【解析】由题意,根据实数指数函数性质,可得,根据对数的运算性质,可得,即可得到答案.【详解】由题意,根据实数指数函数的性质,可得,根据对数的运算性质,可得;故选C【点睛】本题主要考查了指数函数与对数函数的运算性质的应用,其中解答中合理运用指数函数和对数函数的运算性质,合理得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、A【解析】先由函数的奇偶性确定部分选项,再通过特殊值得到答案.【详解】因为,所以在区间上是偶函数,故排除B,D,又,故选:A【点睛】本题主要考查函数的性质确定函数的图象,属于基础题.8、B【解析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.9、D【解析】利用任意角的三角函数的定义可求得的值,进而可得答案.【详解】因为点是角终边上一点,所以,所以.故选:D.10、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、26【解析】根据百分位数的定义即可得到结果.【详解】解:,该组数据的第分位数为从小到大排序后第2与3个数据的平均数,第2与3个数据分别是25、27,故该组数据的第分位数为,故答案为:2612、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:13、【解析】根据诱导公式可求该值.【详解】.故答案为:.【点睛】诱导公式有五组,其主要功能是将任意角的三角函数转化为锐角或直角的三角函数.记忆诱导公式的口诀是“奇变偶不变,符号看象限”.本题属于基础题.14、【解析】计算出一个弓形的面积,由题意可知,勒洛三角形由三个全等的弓形以及一个正三角形构成,利用弓形和正三角形的面积可求得结果.【详解】由弧长公式可得,可得,所以,由和线段所围成的弓形的面积为,而勒洛三角形由三个全等的弓形以及一个正三角形构成,因此,该勒洛三角形的面积为.故答案为:.15、【解析】由条件可得a<0,且1+2=,1×2=.b=a>0,c=2a>0,可得要解得不等式即x2+x>0,由此求得它的解集【详解】∵关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},∴a<0,且1+2=,1×2=∴b=a>0,c=2a>0,∴=,=故关于x的不等式cx2+bx+a>0,即x2+x>0,即(x+1)(x)>0,故x<1或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为【点睛】本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题16、##0.5【解析】将点代入函数解得,再计算得到答案.【详解】,故,.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)-1(2)【解析】(1)由得出实数b的值,再验证奇偶性即可;(2)由结合函数的单调性解不等式,结合基本不等式求解得出实数k的取值范围【小问1详解】∵函数的定义域为R,且为奇函数,解得经检验,当b=-1时,为奇函数,满足题意故实数b的值为-1【小问2详解】,∴f(x)在R上单调递增,在上恒成立,在上恒成立(当且仅当x=0时,取“=”),则∴实数k的取值范围为18、(1);(2)或.【解析】(1)求出集合,再根据集合间的基本运算即可求解;(2)求出,再根据集合间的基本运算即可求解.【详解】解:(1)由,解得:,故,又,;(2)由(1)知:,或,或.19、(1),递增区间为;(2).【解析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【点睛】解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.20、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论