版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省重点中学2026届高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则关于的不等式的解集是()A. B.或C.或 D.2.函数的图像必经过点A.(0,2) B.(4,3)C.(4,2) D.(2,3)3.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.14.已知,则的最小值为().A.9 B.C.5 D.5.在长方体中,,,则直线与平面所成角的正弦值为()A. B.C. D.6.若,则cos2x=()A. B.C. D.7.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.48.设函数的最小值为-1,则实数的取值范围是A. B.C. D.9.函数f(x)=-x+tanx(<x<)的图象大致为()A. B.C. D.10.半径为的半圆卷成一个圆锥,则它的体积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数(,且)的图象经过点,则___________.12.经过原点并且与直线相切于点的圆的标准方程是__________13.要在半径cm的圆形金属板上截取一块扇形板,使弧AB的长为m,那么圆心角_________.(用弧度表示)14.当时,函数的值总大于,则的取值范围是________15.已知圆锥的表面积为,且它的侧面展开图是一个半圆,求这个圆锥的体积是______16.已知函数,若,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域18.设函数.(1)计算;(2)求函数的零点;(3)根据第(1)问计算结果,写出的两条有关奇偶性和单调性的正确性质,并证明其中一个.19.某中学有初中学生1800人,高中学生1200人,为了解全校学生本学期开学以来(60天)的课外阅读时间,学校采用分层抽样方法,从中抽取100名学生进行问卷调查.将样本中的“初中学生”和“高中学生”按学生的课外阅读时间(单位:时)各分为5组[0,10)、[10,20)、[20,30)、[30,40)、[40,50],得到频率分布直方图如图所示.(1)估计全校学生中课外阅读时间在[30,40)小时内的总人数是多少;(2)从课外阅读时间不足10小时的样本学生中随机抽取3人,求至少有2个初中生的概率;(3)国家规定,初中学生平均每人每天课外阅读时间不少于半个小时.若该校初中学生课外阅读时间小于国家标准,则学校应适当增加课外阅读时间,根据以上抽样调查数据,该校是否需要增加初中学生的课外阅读时间?并说明理由.20.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.21.函数(其中)的图像如图所示.(Ⅰ)求函数的解析式;(Ⅱ)求函数在上的最大值和最小值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】判断出,再利用一元二次不等式的解法即可求解.【详解】因,所以,即.所以,解得.故选:D【点睛】本题考查了一元二次不等式的解法,考查了基本运算求解能力,属于简单题.2、B【解析】根据指数型函数的性质,即可确定其定点.【详解】令得,所以,因此函数过点(4,3).故选B【点睛】本题主要考查函数恒过定点的问题,熟记指数函数的性质即可,属于基础题型.3、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C4、B【解析】首先将所给的不等式进行恒等变形,然后结合均值不等式即可求得其最小值,注意等号成立的条件.【详解】.,且,,当且仅当,即时,取得最小值2.的最小值为.故选B.【点睛】本题主要考查基本不等式求最值的方法,代数式的变形技巧,属于中等题.5、D【解析】如图,连接交于点,连接,则结合已知条件可证得为直线与平面所成角,然后根据已知数据在求解即可【详解】解:如图,连接交于点,连接,因为长方体中,,所以四边形为正方形,所以,,所以,因为平面,所以,因为,所以平面,所以为直线与平面所成角,因为,,所以,在中,,所以直线与平面所成角的正弦值为,故选:D【点睛】此题考查线面角的求法,考查空间想象能力和计算能力,属于基础题6、D【解析】直接利用二倍角公式,转化求解即可【详解】解:,则cos2x=1﹣2sin2x=1﹣2故选D【点睛】本题考查二倍角的三角函数,考查计算能力7、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D8、C【解析】当时,为增函数,最小值为,故当时,,分离参数得,函数开口向下,且对称轴为,故在递增,,即.考点:分段函数的最值.【思路点晴】本题主要考查分段函数值域问题,由于函数的最小值为,所以要在两段函数图象都要讨论最小值.首先考虑没有参数的一段,当时,为增函数,最小值为.由于这一段函数值域已经包括了最小值,故当时,值域应该不小于,分离常数后利用二次函数图象与性质可求得参数的取值范围.9、D【解析】利用函数的奇偶性排除部分选项,再利用特殊值判断.【详解】因为,所以是奇函数,排除BC,又因为,排除A,故选:D10、A【解析】根据题意可得圆锥母线长为,底面圆的半径为,求出圆锥高即可求出体积.【详解】半径为半圆卷成一个圆锥,可得圆锥母线长为,底面圆周长为,所以底面圆的半径为,圆锥的高为,所以圆锥的体积为.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】把点的坐标代入函数的解析式,即可求出的值.【详解】因为函数的图象经过点,所以,解得.故答案为:.12、【解析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可13、【解析】由弧长公式变形可得:,代入计算即可.【详解】解:由题意可知:(弧度).故答案为:.14、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,15、【解析】设圆锥母线长为,底面圆半径长,侧面展开图是一个半圆,此半圆半径为,半圆弧长为,表面积是侧面积与底面积的和,则圆锥的底面直径圆锥的高点睛:本题主要考查了棱柱,棱锥,棱台的侧面积和表面积的知识点.首先,设圆锥母线长为,底面圆半径长,然后根据侧面展开图,分析出母线与半径的关系,然后求解其底面体积即可16、0【解析】由,即可求出结果.【详解】由知,则,又因为,所以.故答案:0.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解析】(1)根据的零点求出,的值,得出函数的解析式,然后解二次不等式即可;(2)利用换元法,令,则,然后结合二次函数的图象及性质求出最值.【详解】(1)由题意得,解得所以当时,即,.(2)令,则,,当时,有最小值,当时,有最大值,故.【点睛】本题考查二次函数的解析式求解、值域问题以及一元二次不等式的解法,较简单.解答时只要抓住二次方程、二次函数、二次不等式之间的关系,则问题便可迎刃而解.18、(1),,,;(2)零点为;(3)答案见解析.【解析】(1)根据解析式直接计算即可;(2)由可解得结果;(3)由(1)易知为非奇非偶函数,用定义证明是上的减函数.【详解】(1),,,.(2)令得,故,即函数的零点为.(3)由(1)知,,且,故为非奇非偶函数;是上的减函数.证明如下:()任取,且,则,因为当时,,则,又,,所以,即,故函数是上的减函数.19、(1)720人(2)(3)需要增加,理由见解析【解析】(1)由分层抽样的特点可分别求得抽取的初中生、高中生人数,由频率分布直方图的性质可知初中生、高中生课外阅读时间在,小时内的频率,然后由频数样本容量频率可分别得初中生、高中生课外阅读时间在,小时内的样本学生数,最后将两者相加即可(2)记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,由频数样本容量频率组距频率可分别得初中生、高中生中,阅读时间不足10个小时的学生人数,然后用列举法表示出随机抽取3人的所有可能结果以及事件的结果,从而得(3)同一组中的数据用该组区间中点值作为代表来计算样本中的所有初中生平均每天阅读时间,并与30小时比较大小,若小于30小时,则需要增加,否则不需要增加【小问1详解】由分层抽样知,抽取的初中生有人,高中生有人初中生中,课外阅读时间在,小时内的频率为:,学生人数为人高中生中,课外阅读时间在,小时内的频率为:,学生人数约有人,全校学生中课外阅读时间在,小时内学生总人数为人【小问2详解】记“从阅读时间不足10个小时的样本学生中随机抽取3人,至少有2个初中生”为事件,初中生中,阅读时间不足10个小时的学生人数为人,高中生中,阅读时间不足10个小时的学生人数为人记这3名初中生为,,,这2名高中生为,,则从阅读时间不足10个小时的样本学生中随机抽取3人,所有可能结果共有10种,即,,,,,,,,,,而事件结果有7种,它们是:,,,,,,,至少抽到2名初中生的概率为【小问3详解】样本中的所有初中生平均每天阅读时间为:(小时),而(小时),,该校需要增加初中学生课外阅读时间20、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题21、(Ⅰ);(Ⅱ)最大值为1,最小值为0.【解析】(Ⅰ)由图象可得,从而得可得,再根据函数图象过点,可求得,故可得函数的解析式.(Ⅱ)根据的范围得到的范围,得到的范围后可得的范围,由此可得函数的最值试题解析:(Ⅰ)由图像可知,,∴,∴.∴又点在函数的图象上,∴,,∴,,又,∴∴的解析式是(Ⅱ)∵,∴∴,∴,∴当时,函数取得最大值为1;当时,函数取得最小值为0点睛:根据图象求解析式y=Asin(ωx+φ)的方法(1)根据函数图象的最高点或最低点可求得A;(2)ω
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60358-1:2025 EN Coupling capacitors and capacitor dividers - Part 1: General rules
- 【正版授权】 IEC 62541-22:2025 EN OPC unified architecture - Part 22: Base Network Model
- 2025年中职水产养殖技术(水质调控技术)试题及答案
- 5.8《找最小公倍数》(教学课件)-五年级 数学上册 北师大版
- 可爱儿童成长简历
- 工程施工安全培训报道课件
- 工程技术员论职
- 工程安全生产管理培训课件
- 工程安全培训装置价目表课件
- 【初中 生物】动物的主要类群(第1课时)课件-2025-2026学年北师大版生物学八年级下册
- 江苏省专升本2025年食品科学与工程食品工艺学试卷(含答案)
- 具身智能+物流智能仓储解决方案分析报告
- 2025年西藏公开遴选公务员笔试试题及答案解析(综合类)
- 人行道维修施工方案
- TOP TOY潮玩集合品牌盲盒营销现状及对策研究
- 第16课 祖国我为您自豪(教学课件)小学二年级上册 统编版《道德与法治》新教材
- 小学科学新教科版三年级上册全册教案(2025秋新版)
- 2025北京朝阳八年级(下)期末历史试卷及答案
- 教练技术一阶段课件
- 无人机教学 课件
- 电表移交协议书
评论
0/150
提交评论