广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题含解析_第1页
广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题含解析_第2页
广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题含解析_第3页
广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题含解析_第4页
广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省肇庆联盟校2026届高二上数学期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设变量满足约束条件:,则的最小值()A. B.C. D.2.下列函数求导运算正确的个数为()①;②;③;④.A.1 B.2C.3 D.43.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.4.一道数学试题,甲、乙两位同学独立完成,设命题是“甲同学解出试题”,命题是“乙同学解出试题”,则命题“至少一位同学解出试题”可表示为()A. B.C. D.5.数列2,0,2,0,…的通项公式可以为()A. B.C. D.6.在数列中,,,则()A.985 B.1035C.2020 D.20707.学校为了解学生在课外读物方面的支出情况,抽取了n位同学进行调查,结果显示这些同学的支出都在(单位:元)内,其中支出在(单位:元)内的同学有67人,其频率分布直方图如图所示,则n的值为()A.100 B.120C.130 D.3908.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.9.已知随机变量,,则的值为()A.0.24 B.0.26C.0.68 D.0.7610.已知直线,当变化时,所有直线都恒过点()A.B.C.D.11.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.3812.已知双曲线的右焦点为,渐近线为,,过的直线与垂直,且交于点,交于点,若,则双曲线的离心率为()A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的导数_________________.14.已知为等比数列的前n项和,若,,则_____________.15.已知的展开式中项的系数是,则正整数______________.16.如图,正方形ABCD的边长为8,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL.依此方法一直继续下去.①从正方形ABCD开始,第7个正方形的边长为___;②如果这个作图过程可以一直继续下去,那么作到第n个正方形,这n个正方形的面积之和为___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱柱中,,,,四边形为菱形,在平面ABCD内的射影O恰好为AD的中点,M为AB的中点.(1)求证:平面;(2)求平面与平面夹角的余弦值.18.(12分)保护生态环境,提倡环保出行,节约资源和保护环境,某地区从2016年开始大力提倡新能源汽车,每年抽样1000汽车调查,得到新能源汽车y辆与年份代码x年的数据如下表:年份20162017201820192020年份代码第x年12345新能源汽车y辆305070100110(1)建立y关于x的线性回归方程;(2)假设该地区2022年共有30万辆汽车,用样本估计总体来预测该地区2022年有多少新能源汽车参考公式:回归方程斜率和截距的最小二乘估计公式分别为,19.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称20.(12分)已知椭圆的右焦点为,短轴长为4,设,的左右有两个焦点求椭圆C的方程;若P是该椭圆上的一个动点,求的取值范围;是否存在过点的直线l与椭圆交于不同的两点C,D,使得?若存在,求出直线l的方程;若不存在,请说明两点21.(12分)某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率22.(10分)已知数列的前n项和为,,且.(1)求数列的通项公式;(2)在与之间插入n个数,使这个数组成一个公差为的等差数列,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.2、A【解析】根据导数的运算法则和导数的基本公式计算后即可判断【详解】解:①,故错误;②,故正确;③,故错误;④,故错误.所以求导运算正确的个数为1.故选:A.3、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D4、D【解析】根据“或命题”的定义即可求得答案.【详解】“至少一位同学解出试题”的意思是“甲同学解出试题,或乙同学解出试题”.故选:D.5、D【解析】举特例排除ABC,分和讨论确定D.【详解】A.当时,,不符;B.当时,,不符;C.当时,,不符;D.当时,,当时,,符合.故选:D.6、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A7、A【解析】根据小矩形的面积之和,算出位于10~30的2组数的频率之和为0.33,从而得到位于30~50的数据的频率之和为1-0.33=0.67,再由频率计算公式即可算出样本容量的值.【详解】位于10~20、20~30的小矩形的面积分别为位于10~20、20~30的据的频率分别为0.1、0.23可得位于10~30的前3组数的频率之和为0.1+0.23=0.33由此可得位于30~50数据的频率之和为1-0.33=0.67∵支出在[30,50)的同学有67人,即位于30~50的频数为67,∴根据频率计算公式,可得解之得.故选:A8、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D9、A【解析】根据给定条件利用正态分布的对称性计算作答.【详解】因随机变,,有P(ξ<4)=P(ξ≤4)=0.76,由正态分布的对称性得:,所以的值为0.24.故选:A10、D【解析】将直线方程整理为,从而可得直线所过的定点.【详解】可化为,∴直线过定点,故选:D.11、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A12、C【解析】由题设易知是的中垂线,进而可得,结合双曲线参数关系及离心率公式求双曲线的离心率即可.【详解】由题意,是的中垂线,故,由对称性得,则,故,∴.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】根据初等函数的导数法则和导数的四则运算法则,准确运算,即可求解.【详解】由题意,函数,可得.故答案为:.14、30【解析】根据等比数列性质得,,也成等比,即可求得结果.【详解】由等比数列的性质可知,,,构成首项为10,公比为1的等比数列,所以【点睛】本题考查等比数列性质,考查基本求解能力,属基础题.15、4【解析】由已知二项式可得展开式通项为,根据已知条件有,即可求出值.详解】由题设,,∴,则且为正整数,解得.故答案为:4.16、①.1②.【解析】根据题意,正方形边长成等比数列,正方形的面积等于边长的平方可得,然后根据等比数列的通项公式及等比数列的前n项和的公式即可求解.【详解】设第n个正方形的边长为,第n个正方形的面积为,则第n个正方形的对角线长为,所以第n+1个正方形的边长为,,∴数列{}是首项为,公比为的等比数列,,∴,即第7个正方形的边长为1;∴数列{}是首项为,公比为的等比数列,故答案为:1;.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先证明,,即可证明平面;(2)建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为O为在平面ABCD内的射影,所以平面ABCD,因为平面ABCD,所以.如图,连接BD,在中,.设CD的中点为P,连接BP,因为,,,所以,且,则.因为,所以,易知,所以.因为平面,平面,,所以平面.【小问2详解】由(1)知平面ABCD,所以可以点O为坐标原点,以OA,,所在直线分别为x,z,以平面ABCD内过点O且垂直于OA的直线为y轴,建立如图所示的空间直角坐标系,则,,,,,所以,,,,设平面的法向量为,,,则可取平面的一个法向量为.设平面的法向量为,,,则令,得平面的一个法向量为.设平面与平面的平面角为,由法向量的方向可知与法向量的夹角大小相等,所以,所以平面与平面夹角的余弦值为.18、(1)(2)46800【解析】(1)第一步分别算第x,y的平均值,第二步利用,即可得到方程.(2)由第一问的结果,带入方程即可算出预估的结果.【小问1详解】,,,因为,所以,所以【小问2详解】预测该地区2022年抽样1000汽车调查中新能源汽车数,当时,,该地区2022年共有30万辆汽车,所以新能源汽车.19、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达定理得到两根之和,两根之积,求出两点的纵坐标,证明出,即可证明关于轴对称.【小问1详解】由题意得,,所以直线方程为,与椭圆方程联立得解得或,当时,,所以【小问2详解】设,,的方程为,联立消去得,则,直线的方程为,设,则,直线的方程为,设,则,因为,即,所以点,关于轴对称20、(1)(2)(3)满足条件的直线不存在,详见解析【解析】根据条件直接求出,进而求出椭圆标准方程;设,表示出,求出其范围;设CD的中点为;由,则;得到其斜率的乘积为,最后列取方程联立计算即可.【详解】解:由题意可知,,则;所以椭圆C的方程为:;由题意可知,,设,则,;所以的取值范围是;假设存在满足条件的直线,根据题意得直线的斜率存在;则设直线的方程为:;消化简得:;,则;;设,则CD的中点为;,;,则;,即;即,无解;故满足条件的直线不存在.【点睛】本题考查椭圆的简单几何性质,向量的数量积,直线的垂直,设而不求的思想方法,关键在于将几何条件进行适当的转化,还考查了学生的综合运算能力,属于中档题.21、(1)6人;(2)75%;(3).【解析】(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人)(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率是,于是,可以估计这次考试化学学科及格率约为75%(3)由(1)知,“成绩低于5

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论