版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(人教2024版)数学八年级上册第十三章三角形大单元教学设计—大单元主题背景分析(教材分析)—一对称图形”等章节奠定基础.通过研究三角形的基本概念、边角关系、特殊线段(高、中线、角平分线)及内角和性质,学生将系统掌握几何图形的核心要素,培养空间观念与逻辑推理能力.●几何直观:通过观察、操作(如画高、折中线)感知三角形稳定性及内角和规律;●模型观念:结合实际问题(如设计三角形支架、计算多边形内角和),建立三角形模型解决现实问题.●认知基础:学生已熟悉线段、角的基本性质,但空间想象能力较弱,对“三角形稳定性”的抽象理解存在●学习难点:动态理解三角形高、中线、角平分线的区别与联系,以及直角三角形斜边中线性质的应用;●兴趣点:通过实验操作(如拼接三角形纸片)和实际测量(如校园内三角形结构)激发探究欲望.知识与技能1.理解三角形的定义及分类(按角、按边),掌握三角形三边关系定理;2.识别并画出三角形的高、中线、角平分线,理解其性质(如中线平分面积);3.掌握三角形内角和为180°,外角等于不相邻两内角之和;4.理解直角三角形的性质(如斜边中线等于斜边一半)及判定方法(如一个角为90°).1.经历从“实验操作”到“逻辑论证”的推理过程(如通过折叠验证内角和);2.培养分类讨论思想(如已知两边及一边对角时三角形的存在性分析);3.建立几何命题的逆向思维(如从内角和反推外角性质).1.能用三角形稳定性原理解决实际问题(如设计稳固的支架);2.运用内角和、外角性质计算特殊图形角度;3.通过小组合作完成项目式学习(如“校园内三角形结构调查”).1.感受几何图形在现实生活中的应用价值;2.培养严谨的数学表达习惯(如规范书写证明过程);3.增强团队合作意识(如小组讨论中的角色分工). 活动一三角形的概念活动二与三角形有关的线段活动三三角形的内角和外角 学习评价设计过程性评价●课堂表现:通过提问、板演记录学生参与度(占比20%);●实践任务:评价尺规作图、模型制作等动手操作能力(占比30%);●阶段性测验:设计分层测试题(基础题、变式题、拓展题),关注思维过程而非唯一答案.●单元测试:包含选择题(概念辨析)、填空题(性质应用)、解答题(综合证明)和开放题;●成长档案袋:收集学生错题分析、思维导图、学习反思等材料. 改进策略:增加动态演示(如几何画板展示高随顶点移动的变化),设计对比实验(锐角、直角、钝角三角形高的位置).问题2:小组讨论参与度不均衡.2.引入AR技术,通过虚拟实验观察三角形稳定性(如桥梁结构中的三角形应用). 三角形的内角和三角形的外角 教学设计—活动一三角形的概念■情境引入思考:观察三角形的形成过程,说一说什么叫三师生活动:在教师的引导下,学生理解情境问题,合作探究,积极参与到课堂中去.设计意图:生活中的实际案例引入,提高学生学习的积极会数学来源于生活,应用于生活;同时引出本节课题.■探究新知由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.思考:观察如图所示的三角形,说一说三角形由哪些元素顶点线段AB,BC,CA是三角形的边.点A,B,C顶点简称三角形的角.师生活动:学生先独立思考,再小组交流,最后以小组为代表汇报展示.A三角形A三角形c的边B三角形C角边abC顶点追问:再说几个对边与对角的关系试试.思考:按照三角形内角的大小,三角形可以分为哪几类?三角形的分类直角三角形直角三角形三角形锐角三角形钝角三角形思考:你能找出下列三角形各自的特点吗?总结:三条边各不相等的三角形叫作不等边三角形;三条边都相等的三角形叫作等边三角形.思考:按照三角形三边情况,三角形可以分为哪几类?三角形的分类练习:判断以下命题的真假:(1)一个钝角三角形一定不是等腰三角形.()(2)等边三角形是特殊的等腰三角形.()(3)等腰三角形的腰和底一定不相等.()(4)等边三角形是锐角三角形.()(5)直角三角形一定不是等腰三角形.()(6)锐角三角形是三条边都不相等的三角形;()(7)等腰三角形是等边三角形;()(8)等边三角形是等腰三角形.()师生活动:教师引导学生思考,待学生充分交流后,教师选代表总结,教师补充.设计意图:把未知的知识交给学生,让他们在合作学习的过程中,体会到可以用自己的能力去解决新问题,探索新方法,从而获得成功的喜悦.这样一来又大大调动了学生的学习热情,培养和提高了学生学习的主动性和合作精神,同时又使学生的观察力和语言表达能力得到了锻炼.例1.下列图形是三角形吗?不是不是例2.如图,在△ABC中,点D在边BC上,BD=AD=DC=AC.(1)写出以点C为顶点的三角形;(2)写出以AB为边的三角形;(3)找出图中的等腰三角形和等边三角形.是(1)以点C为顶点的三角形有△ABC,△ADC;(3)等腰三角形有△ABD,△ADC,等边三角形有△ADC.例3.(1)图中有几个三角形?用符号表示出这些三角形.(4)以∠D为角的三角形有哪些?(5)说出△BCD的三个角和三个顶点所对的边.解:(1)5个,分别是△ABE,△ABC,△BCE,△BCD,△ECD.例4.把下列三角形进行分类,并把序号填入到正确的位置.三条边相等的是等边三角形.有钝角的是钝角三角形.线段AB的端点均在格点上,只用无刻度的直尺,在给定的网格中,按下列要求以AB为边画△ABC,要求:师生活动:学生独立完成,然后同桌互批;教师鼓励学生到黑板前演示,再走到学生中间对个别学生指导,在学生完成后组织学生进行交流、评价和实物投影展示,对于细节上存在的问题要让学生进行纠错,必须做到解题思考:从A到C你会选择哪条路?■探究新知师生活动:学生先独立思考,再小组交流,最后以小组为代表汇报展示.形.追问:为什么有的围的起来,有的围不起来呢?记录一下所有你围成的边长情况,分析交流一下吧!小棒长度小棒长度能否围成能围成能围成不能围成不能围成追问:以第三次为例,说明为什么不能构成三角形追问:根据以上结果,你能得出什么结论?得出初步的结论:两条短边的长度之和要大于最长的边.探究:三角形任意两边长度的和真的是一定大于第三边吗?每位同学都来试试,先画一个三角形,再量一结论:三角形两边的和大于第三边.三角形两边的差小于第三边.思考:把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?三角形木架的形状不会改变,说明三角形具有稳定性.三角形的稳定性:只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性边长一旦确定,其形状和大小就确定了”.追问:三角形的稳定性有着广泛的应用,以下是其中的一些例子.你能再举出一些例子吗?师生活动:教师引导学生思考,待学生充分交流后,教师选代表总结,教师补充.探索新方法,从而获得成功的喜悦.这样一来又大大调动了学生的学习热情,培养和提高了学生学习的主动性和合作精神,同时又使学生的观察力和语言表达能力得到了锻炼.■探究新知思考:如图,有一块三角形的菜地,现要求分成面积比为1:1:2三块,且图中A处是三块菜地的共同水回顾:什么叫垂线?线段中点?角平分线?垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.线段中点:把一条线段分成两条相等的线段的点角的平分线:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线.在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.中线.追问:这三条中线之间有怎样的位置关系?追问:锐角三角形的三条中线是在三角形的内部还是外部?追问:对于任意三角形,是否也满足“三条中线相交于一点”?分别画出下列锐角三角形、直角三角形和钝角三角形的三条中线,并观察三条中线是否相交于一点.三角形的三条中线相交于一点,且该交点位于三角形内部三角形三条中线的交点,叫做三角形的的_重心,什么关系,为什么?通过以上问题你能发现什么规律?1.三角形的三条中线相交于一点,这点叫做三角形的重心.2.三角形的中线将三角形分成面积相等的两部分.3.三角形重心的性质总结:三角形的中线将三角形分成面积相等的两部分.高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.师生活动:学生先独立思考,再小组交流,最后以小组为代表汇报展示.思考:你能类比三角形的中线的定义,说明什么是三角形的角平分线吗?在三角形中,一个内角的平分线与它的对边相交,这个角C的顶点与_交点之间的线段,叫做三角形的角平分线.C如图,在△ABC中,∠1=∠2相同点是:∠ABD=∠CBD;不同点是:前者是线段,后者是射线.思考:每一个三角形都有个内角,因此每一个三角形都有如图,画出三角形的角平分线.追问:这三条角平分线之间有怎样的位置关系?追问:锐角三角形的三条角平分线是在三角形的内部还是外部?并观察三条角平分线是否相交于一点.三角形的三条角平分线相交于一点.且该交点位于三角形内部内心该点称为三角形的_内心三角形的角平分线是一条线段从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足高的叙述方法(如图):有三种并观察三条高是否相交于一点.(1)锐角三角形且该点位于三角形的内部.<AB).D表示).例11.下列各组图形中,哪一组图形中AD是△ABC的高()例12.如图,在△ABC中,AC=8,BC=4,高BD=3,试作出BC边上的高AE,并求AE的长.解:如图,过点A作BC边上的高线AE,交CB延长线于点E∴AE的长为6生完成后组织学生进行交流、评价和实物投影展示,对于细节上存在的问题要让学生进行纠错,必须做到解题规范.设计意图:通过例题的解答,让学生真正掌握所学知识,同时培养学生变相思考问题的能力,运用知识.学生审题是解题的关键,培养了学生的应用意识.活动三三角形的内角和外角思考:三角形的内角和是多少?我们怎么证明呢?设计意图:由问题导入新课,既复习了旧知识,又引出了新课题,最后设置悬念,既增强了学生的学习兴趣,又激发了学生的学习热情,对学生探究新知识起到很好的推动作用,让学生发表自己的见解,既培养了学生的数学语言表达的能力,又发挥了学生学习的主动性,使他们的注意力始终集中在课堂上.由于测量常常有误差,这样验证三角形的内角和等于180°,不能完全令人信服;又由于形状不同的三角形有无数个,我们不可能用上述方法一一验证所有三角形的内角和等于180°.因此,需要通过推理的方法去证明:任意一个三角形的内角和等于180°.求证:∠A+∠B+∠C=180°证明方法三:推理验证法(1)证明:过点A作1//BC,证明方法三:推理验证法(2)证明:延长BC到D,过点C作CE//BA∠B=∠2(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°证明方法三:推理验证法(3)证明:过D作DE//AC,作DF//AB思考:多种方法证明三角形内角和等于180°的核心是什么?师生活动:学生先独立思考,再小组交流,最后以小组为代表汇报展示.设计意图:在教学中运用探究式教学模式,不仅使学生体验教学再创造的思维过程,而且还培养了学生的创造意识和科学精神.帕斯卡:(1623—1662)是法国著名的数学家、物理学家.早在300多年前,他12岁时,就独立发现了任何三角形的内角和都是180°.例1.求出下列各图中的x值.答案如上例2.如图,在△ABC中,∠B=42°,∠C=78°,AD平分∠BAC.求∠ADC的度数.CC例3.如图,△ABC中,D在BC的延长线上,过D作DE⊥AB于E,交AC于F.已知∠A=30°,∠解:∵DE⊥AB,∴∠FEA=90°.∵在△AEF中,∠FEA=90°,∠A=30°,归纳总结故有∠A+∠AEF=∠D+∠FCD.由三角形的内角和定理常见的模型由三角形的内角和定理易得,∠1+∠2=∠3+∠4.解:设∠C为x°,则∠B为2x°,从而有x+2x+60=180.解得x=40.答:∠C,∠B的度数分别为40°,80°.总结:几何问题借助方程来解,这是一个重要的数学思想.变式:在△ABC中,已知∠B=x°,AD、CE是△ABC的两条角平分线,CE与AD相交于点O,求∠AOC的度数.解:记∠DAC为∠1,∠ACE为∠2,∵AD是△ABC的角平分线(己知),同理例5.如图,B岛在A岛的南偏西40°方向,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东80°方向,求从C岛看A,B两岛的视角∠ACB的度数.解:∠CAE=∠DBE.理由如下:在Rt△ACE中,∠CAE=90°-∠AEC如图,∠B=∠D=90°,AD交BC于点O,则∠A=∠C.师生活动:教师引导学生审题,学生弄清题意后,师生共同分析思路,学生口答,教师板书解题过程.设计意图:鼓励学生认真思考;发现解决问题的方法,引导学生主动地参与教学活动,发扬数学民主,让学生在独立思考、合作交流等数学活动中,培养学生合作互助意识,提高数学交流与数学表达能力.例4.如图,在△ABC中,∠A+∠B=90°,那么△ABC直角三角形吗?解:△ABC是直角三角形,理由如下:在△ABC中,因为∠A+∠B+∠C=180°,而∠A+∠B=90°,所以∠C=90°,即△ABC是直角三角形.归纳总结:直角三角形的判定有两个角互余的三角形是直角三角形.应用格式:∴△ABC是直角三角形.例5.如图,AB//CD,∠CAB和∠ACD的平分线相交于H点,那么△AHC是直角三角形吗?为什么?例6.如图,在△ABC中,∠ACB=90°,解:在Rt△ABC中,∠A+∠B+∠ACB=180°,在Rt△BDC中,∠B+∠BCD+∠BDC=180°在Rt△ABC中,∠A+∠B+∠ACB=180°,在Rt△ADC中,∠A+∠ACD+∠ADC=180°例8.如图,∠C=∠D=90°,AD,BC相交于点E.∠CAE与∠DBE有什么关系?为什么?AC归纳总结:直角三角形的判定有两个角互余的三角形是直角三角形.∴△ABC是直角三角形.C师生活动:教师引导学生思考,待学生充分交流后,教师选代表总结,教师补充.设计意图:在教学中运用探究式教学模式,不仅使学生体验教学再创造的思维过程,而且还培养了学生的创造意识和科学精神.■探究新知思考:假期,果果到爷爷的农田中帮忙,其中有一块田是三角形形状路,按逆时针行走.小明每从AC小路到AB小路时,身体转过的角度是多少?组成的角,叫做三角形的外角.①角的顶点是三角形的顶点,②角的一边是三角形的一边,③另一边是三角形中一边的延长线.思考:如图,延长AC到E,∠BCE是不是△ABC的一个外角?∠DCE是不是△ABC的一个外角?追问:每个顶点处有几个外角?它们有何关系?每个顶点处有2个外角,如上图,△ABC在点C处有两个外角,分别是∠BCE和∠ACD,它们是对顶角,因此它们相等.追问:三角形共有几个外角?每一个三角形都有6个外角.每一个顶点相对应的外角都有2个,且这2个角为对顶角.思考:三角形的一个外角和它相邻的内角有何数量关系?三角形的一个外角和它不相邻的两个内角有何数量关系?解:∠BEC是△AEC的外角;∠AEC是△BEC的外角;∠EFD是△BEF和△DCF的外角.例2.求出下列图形中∠1的度数.例3.已知图中∠A、∠B、∠C分别为80°,20°,30°,求∠1的度数.B解:∵∠2是△ACD的一个外角,追问:如何把图中∠1、∠2、∠3按由大到小的顺序排列?∠BAC=70°.求:(1)∠B的度数;(2CC解:(1)因为∠ADC是△ABD的外角,所以∠ADC=∠B+∠BAD=80°.(2)在△ABC中,因为∠B+∠BAC+∠C=180°,例5.如图,求∠A+∠B+∠C+∠D+∠E的度数.同理∠2=∠A+∠D.同理∠2=∠C+∠D,规范.设计意图:通过例题的解答,让学生真正掌握外角的应用,同时培养学生变相思考问题的能力,运用知识.■课堂小结师生活动:教师和学生一起回顾本节课所讲的内容.1.本节课你学到了什么?2.什么是三角形?如何表示?其基本要素有哪些?3.三角形如何分类?4.三角形的三边有何数量关系?这种数量关系有何应用?5.三角形具有稳定性,你能举出几个例子吗?6.你会画三角形的中线、角平分线和高吗?它们有什么区别和联系?7.三角形的内角和是多少?如何证明?8.直角三角形的性质是什么?如何判定?9.什么是三角形的外角?三角形的外角有什么性质?挥学生的主体作用,有助于学生在理解新知识的基础上,及时把知识系统化,条理化.2.下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型的是()3.下列长度的线段不能组成三角形的是()C.15,20,84.如图,桥梁的斜拉钢索是三角形的结构,主要是为了()B.保持对称C.利用三角形的稳定性D.美观漂亮5.具备下列条件的△ABC中,不是直角三角形的是()6.在一个直角三角形中,有一个锐角等于40°,则另一个锐角的度数是()A.40°B.50°7.具备下列条件的△ABC中,不是直角三角形的是()A.26°B.63°9.如图,共有6个三角形,其中以AC为边的三角形是_;以∠B为内角的三角形有10.已知等腰三角形的两边长分别为8cm,3cm,则这个三角形的周长为的能力,培养学生的应用意识.通过分层练习,进一步提高学生学习兴趣,使学生的认知结构更加完善.同时强化本课的教学重点,突破教学难点. 单元作业设计A.10°B.20°C.30°D【答案】【答案】D【分析】本题主要考查了三角形内角和定理,角平分线的定义,由三角形内角和定理可得∠BAC的度数,再由角平分线的定义即可得到答案.【详解】解:∵∠B=70°,∠C=30°,∠BAC+∠B+∠C=180°,2.一个三角形的两边长分别为4cm和7cm,那么第三边的长可能是()A.11cmB.4cmC.2cm【答案】【答案】B【分析】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边之差小于第三边.根据三角形的三边关系,第三边的长应大于已知的两边的差,而小于两边的和.【详解】解:设第三边的长为xcm,由三角形的三边关系可得7-4<x<7+4,所以它的第三边的长可能是4cm.故选:B.A.58°B.87°C.121°【详解】解:如图,延长AB交DE于点F,DFBE4A.始终等于70°B.始终等于100°C.始终等于110°D.随着直线l位置的改变而改变【答案】【答案】C【分析】本题考查了三角形内角和,根据三角形内角和为180°以及∠POQ=70°,进行作答即可.【详解】解:∵∠POQ=70°,直线1与OP,0Q都相交(不经过点O),∴a,β的度数之和=180°-70°=110°,故选:C5.如图,一束平行于主光轴OF的光线经凸透镜折射后,其折射光线与一束经过光心O的光线相交于点P,点F为焦点.若∠1=165°,∠2=20°,则∠3的大小为()【答案】B【分析】本题考查了平行线的性质,三角形的外角性质.利用平行线的性质求得∠PFO=15°,利用对顶角相等求得∠POF=20°,再利用三角形的外角性质求解即可.【详解】解:∵一束光线平行于主光轴,【答案】【答案】B【分析】本题考查了画三角形的高,熟练掌握高的定义是解题的关键.从BC所对的顶点A向BC或BC的延长线作垂线段即可.C.BE是VABC的边AC上的高,故不符合题意;故选B.7.如图.AD是VABC的外角∠CAE的平分线.∠B=35°,∠DAE=55°.则∠ACB的度数是度.【分析】本题主要查了三角形外角的性质.先根据角平分线的定义可得∠CAE=2∠DAE=110°,然后根据三角形外角的性质解答,即可.【详解】解:∵AD是VABC的外角∠CAE的平分线,∠DAE=55°,8.一副三角板按如图所示的方式摆放,∠B=∠D=90°,∠A=60°,∠E=45°,若AC//DF,则∠1【分析】本题考查了平行线的性质,三角形外角的性质,对顶角相等,正确记忆相关知识点是解题关键.根据三角板得出∠C=30°,∠F=45°,根据AC//DF,得出∠3=∠F=45°,再根据三角形外角的性质和对顶角相等即可求解.2E∠F=180°-∠D-∠E=180°-90【答案】0【答案】0【分析】本题考查了三角形三边关系,整式化简,熟练掌握三角形三边关系是解题的关键.义去掉绝对值即可.义去掉绝对值即可.故答案为:0.10.把一块直尺与一块三角板按如图所示的方式放置.若∠1=142°,则∠2的度数是【分析】本题考查平行线的性质、直角三角形的两个锐角互余,根据平行线的性质、直角三角形的两个锐角互余,结合邻补角求解即可.由题意,∠1+∠3=180°,∠3+∠5=90°,∠2=∠4,【分析】本题主要考查图形的平移、三角形内角和定理,掌握相关知识并灵活应用是解题的关键.(1)根据平移的性质得出∠ACB=∠F=70°,再根据三角形内角和定理即可求出∠A的度数即可;(2)根据平移的性质得出EF=BC=16,再结合BC和EC的长度,利用CF=BE=BC-EC即可解决问题.【详解】(1)解:由平移的定义知:∠ACB=∠F=70°,(3)若VABC的面积为40,AE=5,则点B到AE边的距离为多少?【分析】本题考查了三角形的面积,三角形的中线、高线,解决此类题目最常用的是等底等高的三角形的面积相等,要熟练掌握.(1)根据中线的定义可得BD=CD,然后表示出△ABD的周长,再把AB用AC表示,BD用CD表示,整(2)根据三角形高线的定义作出即可;(3)根据等底等高的三角形的面积相等用VABC的面积表示出△ABE的面积,再利用三角形的面积公式列式计算即可得解.【详解】(1)解:∵AD为VABC的中线,∴△ADC的周长=CD+AD+AC=BD+AD+AC=20cm;AEBF(3)解:设点B到AE边的距离为h∵AD为VABC的中线,BE为△ABD的中线,∴点B到AE边的距离为4.C对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵①(已知),同理可得∠PCB=②在△BPC中,三角形三个内角和等于180°,∴∠BPC=180°-④(等式的性质)【答案】见解析【答案】见解析【分析】本题考查了角平分线的定义,三角形内角和定理,熟练掌握相关知识点是解题的关键.根据角平分线的定义求出∠PBC,∠PCB的值,后根据三角形内角和求解即可.在△BPC中,三角形三个内角和等于180°,∴∠BPC=180°-∠PBC-∠PCB(等式的性质)=115°.1.如图,已知AB//CD,则下列关系式一定成立的是()A.α+β+γ=180°A.α+β+γ=180°C.α-β+γ=0°【答案】D【分析】本题主要查了平行线的性质,三角形内角和定理.设AB,DE交于点F,根据平行线的性质,可得【详解】解:如图,设AB,DE交于点F,EaD2.为了验证如图所示的四边形ABCD中AB与CD所在直线的夹角是否为50°,如下方案,方案二:测量出∠A和∠D的度数.下列判断正确的是()A.方案一正确、方案二正确B.方案一不正确、方案二正确C.方案一正确、方案二不正确D.方案一不正确、方案二不正确【分析】本题考查了三角形内角和定理,三角形外角的性质.延长BA,CD交于点E,方案一,根据三角形内角和定理即可解答;方案二,根据三角形外角的性质即可解答.【详解】解:如图,延长BA,CD交于点E,则AB与CD所在直线的夹角为∠E,EEDA广方案一:测量出∠B和∠C的度数,则AB与CD所在直线的夹角∠E=180°-∠B-∠C,故方案一正确;方案二:测量出∠BAD和∠ADC的度数,可得∠ADE=180°-∠ADC,则AB与CD所在直线的夹角∠E=∠BAD-∠ADE=∠BAD-(180°-∠ADC)=∠BAD+∠ADC-180°,故方案二正确;A.6<c<8B.2<c<14C.8≤c<14【分析】本题考查了非负数的性质,解二元一次方程组,三角形的三边关系,掌握三角形任意两边之和大于第三边,任意两边之差小于第三边是解题关键.根据绝对值和平方的非负性,得到关于a、b的方程组,再根据三角形的三边关系求解即可.【详解】解:∵|a+b-14|+(a-b+2)²=0,B.1<b<4C.1<b<3【分析】本题考查了三角形的三边关系,一元一次不等式组的应用,熟练掌握相关知识点是解题的关键.解得即可得到答案.由三角形的三边关系得到a+c>b,a-c<b,继而得到【详解】解:∵a,b,c分别为三角形ABC的三边,故选:A.【答案】15°/15度【答案】15°/15度【分析】本题考查了三角形的内角和定理,直角三角形两锐角互余,角平分线的定义.根据已知条件用∠A表示出∠B和∠ACB,利用三角形的内角和求出∠A,再求出∠ACB,然后根据直角三角形两锐角互余求出∠ACD,最后根据角平分线的定义求出∠ACE即可.【详解】解:∵解得:x=30°,故答案为:15°.6.如图,在VABC中,∠ACB=90°,∠A=40°,将纸片折叠,使点B落在边AC上的点B'处,折痕与边AB、BC分别交于点D、E.若△ADB′是直角三角形,则∠BDE的度数为.【分析】本题主要考查了直角三角形的性质,翻折的性质,分类讨论的数学思想,解题的关键是熟练掌握翻折的性质.分类讨论,当∠ADB′=90°时和当∠AB'D=90°时,分别利用翻折的性质即可求解.【详解】解:当∠ADB′=90°时,则∠BDB'=90°,根据翻折的性质得,当∠AB'D=90°时,?ADBC90??A50?,根据翻折的性质得,6.已知AB//CD.点M为直线AC上的动点(点M不与点A、C重合),ME⊥AC交直线CD于点E.备用图备用图(1)如图1,当点M在CA上时,若∠MAB=48°,则∠MEC=°;(2)如图2,当点M在CA的延长线上时,∠MAB与∠MEC有怎样的数量关系?写出结论,并说明理由;(3)当点M在AC的延长线上时,∠MAB与∠MEC有怎样的数量关系?写出结论,并说明理由.【答案】(1)42【答案】(1)42(2)∠MAB=90°+∠MEC,理由见解析(3)∠MEC+∠MAB=90°,理由见解析【分析】(1)由平行线的性质得∠ACD=∠MAB=48°,再根据直角三角形两锐角互余即可求解;(2)由直角三角形两锐角互余得∠MCE=90°-∠MEC,进而由平行线的性质得∠BAC=∠MCE=90°-∠MEC,再根据邻补角的性质即可(3)先根据题意画出图形,再根据平行线的性质及直角三角形两锐角互余即可求证;本题考查了直角三角形的两锐角互余,平行线的性质,邻补角的性质,熟练掌握【详解】(1)解:∵AB//CD,故答案为:42;(2)解:∠MAB=90°+∠MEC,理由如下:7.【初步认识】(1)如图①,在VABC中,BP平分∠ABC,CP平分∠ACB.若∠A=80°,则∠P=_;如图②,BM【继续探索】CCBB【答案】(1)130°,∠A=2∠M;(2)【答案】(1)130°,∠A=2∠M;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届新高考英语冲刺复习全国一卷语法填空题分析与解题方法探讨
- 失智老人照护培训课件
- 文库发布:杠杆课件
- 土木施工前安全教育培训课件
- 2024年横塘原文翻译及赏析
- 厦门乐队介绍
- 华阳安全培训app课件
- 补全对话(专项训练)-2025-2026学年人教PEP版(2024)英语三年级上册
- 企业安全员消防培训课件
- 信息技术合同与项目管理制度
- 2026年新《煤矿安全规程》培训考试题库(附答案)
- 鱼塘测量施工方案
- 幼儿园手指律动培训大纲
- 2023年萍乡辅警招聘考试真题及答案详解参考
- 浙江省嵊州市2025-2026学年高二上数学期末质量检测试题含解析
- 湖北省宜昌市秭归县2026届物理八年级第一学期期末学业水平测试模拟试题含解析
- 案场物业管理评估汇报
- 重庆水利安全员c证考试题库和及答案解析
- 【基于微信小程序的书籍共享平台的设计与实现14000字】
- 基金从业内部考试及答案解析
- 2025秋期版国开电大本科《理工英语4》一平台综合测试形考任务在线形考试题及答案
评论
0/150
提交评论