版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市上海外国语大学附中2026届数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象如图所示,则()A. B.C. D.2.直线的倾斜角为().A. B.C. D.3.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.4.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数5.若角的终边过点,则A. B.C. D.6.“”是函数满足:对任意的,都有”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=A.{x|-1<x<3} B.{x|-1<x<1}C.{x|1<x<2} D.{x|2<x<3}8.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.我国著名数学家华罗庚曾说:数缺形时少直观,形少数时难人微,数形结合百般好,割裂分家万事休.在数学的学习和研究中,有时可凭借函数的解析式琢磨函数图像的特征.如函数,的图像大致为()A. B.C. D.10.设函数对的一切实数均有,则等于A.2016 B.-2016C.-2017 D.2017二、填空题:本大题共6小题,每小题5分,共30分。11.函数定义域是____________12.记函数的值域为,在区间上随机取一个数,则的概率等于__________13.已知函数是偶函数,它在上是减函数,若满足,则的取值范围是___________.14.已知函数,若方程有4个不同的实数根,则的取值范围是____15.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.16.函数的定义域是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知().(1)当时,求关于的不等式的解集;(2)若f(x)是偶函数,求k的值;(3)在(2)条件下,设,若函数与的图象有公共点,求实数b的取值范围18.已知函数.(1)若的图象恒在直线上方,求实数的取值范围;(2)若不等式在区间上恒成立,求实数的取值范围.19.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有两个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的和不大于,求的取值范围.20.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a的取值范围.21.如图,三棱锥中,平面平面,,,(1)求三棱锥的体积;(2)在平面内经过点,画一条直线,使,请写出作法,并说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据正弦型函数图象与性质,即可求解.【详解】由图可知:,所以,故,又,可求得,,由可得故选:C.2、B【解析】设直线的倾斜角为∵直线方程为∴∵∴故选B3、C【解析】根据题意,结合Venn图与集合间的基本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.4、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B5、D【解析】角的终边过点,所以.由角,得.故选D.6、A【解析】当时,在上递减,在递减,且在上递减,任意都有,充分性成立;若在上递减,在上递增,任意,都有,必要性不成立,“”是函数满足:对任意的,都有”的充分不必要条件,故选A.7、A【解析】由已知,集合A=(-1,2),B=(1,3),故A∪B=(-1,3),选A考点:本题主要考查集合概念,集合的表示方法和并集运算.8、D【解析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D9、B【解析】根据题意求出函数的定义域并判断出函数的奇偶性,再代入特殊值点即可判断答案.【详解】由题意,函数定义域为,,于是排除AD,又,所以C错误,B正确.故选:B.10、B【解析】将换成再构造一个等式,然后消去,得到的解析式,最后可求得【详解】①②①②得,故选:【点睛】本题考查求解析式的一种特殊方法:方程组法.如已知,求,则由已知得,把和作为未知数,列出方程组可解出.如已知也可以用这种方法求解析式二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据偶次方根式下被开方数非负,有因此函数定义域,注意结果要写出解集性质.考点:函数定义域12、【解析】因为;所以的概率等于点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率13、【解析】由偶函数的性质可得,再由函数在上是减函数,可得,从而可求出的取值范围【详解】因为函数是偶函数,所以可化为,因为函数在上是减函数,所以,所以或,解得或,所以的取值范围是,故答案为:14、【解析】先画出函数的图象,把方程有4个不同的实数根转化为函数的图象与有四个不同的交点,结合对数函数和二次函数的性质,即可求解.【详解】由题意,函数,要先画出函数的图象,如图所示,又由方程有4个不同的实数根,即函数的图象与有四个不同的交点,可得,且,则=,因为,则,所以.故答案为.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把方程有4个不同的实数根,转化为两个函数的有四个交点,结合对数函数与二次函数的图象与性质求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于中档试题.15、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).16、【解析】由题意可得,从而可得答案.【详解】函数的定义域满足即,所以函数的定义域为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)1(3)【解析】(1)根据条件列指数不等式,直接求解即可;(2)利用偶函数定义列直接求解即可;(3)根据题意列方程,令,得到方程,构造,结合二次函数性质讨论方程的根即可.【详解】(1)因为所以原不等式的解集为(2)因为的定义域为且为偶函数,所以即所以.经检验满足题意.(3)有(2)可得因为函数与的图象有公共点所以方程有根即有根令且()方程可化为(*)令恒过定点①当时,即时,(*)在上有根(舍);②当时,即时,(*)在上有根因为,则(*)方程在上必有一根故成立;③当时,(*)在上有根则有④当时,(*)在上有根则有综上可得:的取值范围为【点睛】本题重点考查了函数方程的求解及二次函数根的分布,用到了换元和分类讨论的思想,考查了学生的计算能力,属于难题.18、(1);(2).【解析】(1)根据给定条件可得恒成立,再借助判别式列出不等式求解即得.(2)根据给定条件列出不等式,再分离参数,借助函数的单调性求出函数值范围即可推理作答.【小问1详解】因函数的图象恒在直线上方,即,,于是得,解得,所以实数的取值范围是:.【小问2详解】依题意,,,令,,令函数,,,,而,即,,则有,即,于是得在上单调递增,因此,,,即,从而有,则,所以实数的取值范围是.19、(1);(2);(3).【解析】(1)当a=1时,利用对数函数的单调性,直接解不等式f(x)1即可;(2)化简关于x的方程f(x)+2x=0,通过分离变量推出a的表达式,通过解集中恰有两个元素,利用二次函数的性质,即可求a的取值范围;(3)在R上单调递减利用复合函数的单调性,求解函数的最值,∴令,化简不等式,转化为求解不等式的最大值,然后求得a的范围【详解】(1)当时,,∴,解得,∴原不等式的解集为.(2)方程,即为,∴,∴,令,则,由题意得方程在上只有两解,令,,结合图象可得,当时,直线和函数的图象只有两个公共点,即方程只有两个解∴实数的范围.(3)∵函数在上单调递减,∴函数在定义域内单调递减,∴函数在区间上最大值为,最小值为,∴,由题意得,∴恒成立,令,∴对,恒成立,∵在上单调递增,∴∴,解得,又,∴∴实数的取值范围是.【点睛】本题考查函数的综合应用,复合函数的单调性以及指对复合型函数的最值的求法,利用换元法将指对复合型函数转化为二次函数求最值是关键,考查转化思想以及分类讨论思想的应用,属于难题20、(1)..(2)【解析】(1)由求得,作出函数图象可知的范围;(2)由函数图象可知区间所属范围,列不等式示得结论.【详解】(1)因为,所以.函数大致图象如图所示令,得.故有3个不同的零点.即方程有3个不同的实根.由图可知.(2)由图象可知,函数在区间和上分别单调递增.因为,且函数在区间上为增函数,所以可得,解得.所以实数a的取值范围为.【点睛】本题考查由函数值求参数,考查分段函数的图象与性质.考查零点个数问题与转化思想.属于中档题.21、(1)见解析(2)见解析【解析】(1)取的中点,连接,因为,所以,由面面垂直的性质可得平面,求出的值,利用三角形面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年天津仁爱学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年洛阳职业技术学院马克思主义基本原理概论期末考试笔试题库
- 2025年焦作师范高等专科学校马克思主义基本原理概论期末考试真题汇编
- 2025年厦门软件职业技术学院马克思主义基本原理概论期末考试笔试题库
- 河南省驻马店市部分学校2025-2026学年高二上学期10月月考政治试题(解析版)
- 康复护理培训汇报
- 智能家居系统集成实施方案
- 家居建材团购活动方案
- 远程办公2026年融资合同协议
- 2026年医疗信息化系统合作协议
- 教育教学微型课题申请·评审表
- 上海交通大学《大学英语》2021-2022学年期末试卷
- 职业技术学院《建筑力学与结构》课程标准
- 翻译技术实践智慧树知到期末考试答案章节答案2024年山东师范大学
- JJG 621-2012 液压千斤顶行业标准
- 供电一把手讲安全课
- 本科实习男护生职业认同感调查及影响因素分析
- 未分化型精神分裂症的护理查房
- GB 31604.1-2023食品安全国家标准食品接触材料及制品迁移试验通则
- 工控组态技术及应用-MCGS模块三MCGS模拟量组态基本知识课件
- YC/T 405.2-2011烟草及烟草制品多种农药残留量的测定第2部分:有机氯和拟除虫菊酯农药残留量的测定气相色谱法
评论
0/150
提交评论