2026届云南省迪庆高一数学第一学期期末教学质量检测试题含解析_第1页
2026届云南省迪庆高一数学第一学期期末教学质量检测试题含解析_第2页
2026届云南省迪庆高一数学第一学期期末教学质量检测试题含解析_第3页
2026届云南省迪庆高一数学第一学期期末教学质量检测试题含解析_第4页
2026届云南省迪庆高一数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届云南省迪庆高一数学第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,则A. B.C. D.2.已知,,且,均为锐角,那么()A. B.或-1C.1 D.3.下列函数中,最小正周期为,且图象关于直线对称的是A. B.C. D.4.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95005.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则6.已知函数是奇函数,则A. B.C. D.7.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形8.已知角的顶点为坐标原点,始边为轴正半轴,终边经过点,则()A. B.C. D.9.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件10.已知函数fx=x+a,x≤0,x2,x>0,那么“a=0”是A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,其中表示不超过x的最大整数.例如:,,.①______;②若对任意都成立,则实数m的取值范围是______12.若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为___________.13.定义在上的函数满足,且时,,则________14.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________15.若,,则________.16.______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在下列三个条件中任选一个,补充在下面的问题中,并作答①的最小正周期为,且是偶函数:②图象上相邻两个最高点之间的距离为,且;③直线与直线是图象上相邻的两条对称轴,且问题:已知函数,若(1)求,的值;(请先在答题卡上写出所选序号再做答)(2)将函数的图象向右平移个单位长度后,再将得到的函数图象上所有点的横坐标伸长为原来的4倍,纵坐标不变,得到函数的图象,求在上的最小值和最大值18.若函数,.(1)当时,求函数的最小值;(2)若函数在区间上的最小值是,求实数的值.19.已知函数,该函数图象一条对称轴与其相邻的一个对称中心的距离为(1)求函数的对称轴和对称中心;(2)求在上的单调递增区间20.已知函数是偶函数(其中为自然对数的底数,…)(1)求的值;(2)若方程在区间上有实数根,求实数的取值范围21.已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分别求出的值再带入即可【详解】因为,所以因为,所以所以【点睛】本题考查两角差的余弦公式.属于基础题2、A【解析】首先确定角,接着求,,最后根据展开求值即可.【详解】因为,均为锐角,所以,所以,,所以.故选:A.【点睛】(1)给值求值问题一般是正用公式将所求“复角”展开,看需要求相关角的哪些三角函数值,然后根据角的范围求出相应角的三角函数值,代入展开式即可(2)通过求所求角的某种三角函数值来求角,关键点在选取函数,常遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好3、B【解析】因为函数的最小正周期是,故先排除选项D;又对于选项C:,对于选项A:,故A、C均被排除,应选B.4、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.5、D【解析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【点睛】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.6、A【解析】由函数的奇偶性求出,进而求得答案【详解】因为是奇函数,所以,即,则,故.【点睛】本题考查函数的奇偶性,属于基础题7、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B8、A【解析】利用任意角的三角函数的定义,即可求得的值【详解】角的顶点为坐标原点,始边为轴正半轴,终边过点.由三角函数的定义有:.故选:A9、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.10、A【解析】利用充分条件和必要条件的定义判断.【详解】当a=0时,fx=x,x≤0当函数fx是增函数时,则a≤0故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】①代入,由函数的定义计算可得答案;②分别计算时,时,时,时,时,时,时,的值,建立不等式,求解即可【详解】解:①∵,∴②当时,;当时,;当时,;当时,;当时,;当时,;当时,又对任意都成立,即恒成立,∴,∴,∴实数m的取值范围是故答案为:;.【点睛】关键点睛:本题考查函数的新定义,关键在于理解函数的定义,分段求值,建立不等式求解.12、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:13、【解析】根据题意可得,再根据对数运算法则结合时的解析式,即可得答案;【详解】由可得函数为奇函数,由可得,故函数的周期为4,所以,因为,所以..故答案为:.【点睛】本题考查函数奇偶性及对数的运算法则,考查逻辑推理能力、运算求解能力.14、55【解析】用减去销量为的概率,求得日销售量不低于50件的概率.【详解】用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55.故答案为:【点睛】本小题主要考查根据频率分布直方图计算事件概率,属于基础题.15、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:16、2【解析】由对数的运算法则直接求解.【详解】故答案为:2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)最小值为1,最大值为2【解析】(1)根据①②③所给的条件,以及正余弦函数的对称性和周期性之间的关系即可求解;(2)根据函数的伸缩平移变换后的特点写出的解析式即可.【小问1详解】选条件①:∵的最小正周期为,∴,∴;又是偶函数,∴对恒成立,得对恒成立,∴,∴(),又,∴;选条件②:∵函数图象上相邻两个最高点之间的距离为,∴,;又,∴,即,∴(),又,∴;选条件③:∵直线与直线是图象上相邻的两条对称轴,∴,即.∴;又,∴,∴(),又,∴;【小问2详解】由(1)无论选择①②③均有,,即,将图象向右平移个单位长度后,得到的图象,将的图象上所有点的横坐标伸长为原来的4倍,纵坐标不变,得到的图象,∵,∴∴在上单调递增;在上单调递减又∵,,∴在的最小值为1,最大值为2;综上:,最小值=1,最大值=2.18、(1)(2)【解析】(1)当时,,当时,函数的值最小,求解即可;(2)由于,分,,三种情况讨论,再结合题意,可得实数的值【小问1详解】解:依题意得若,则又,所以的值域为所以当时,取得最小值为小问2详解】解:∵∴所以当时,,所以,不符合题意当时,,解得当时,,得,不符合题意综上所述,实数的值为.19、(1)对称轴为,;,(2)和【解析】(1)先把化简成一个角的三角函数形式,再整体代换法去求的对称轴和对称中心;(2)整体代换法去求在上的单调递增区间即可.【小问1详解】由题可知,由对称轴与其相邻的一个对称中心的距离为,得,解得,所以令,即,所以的对称轴为,;令,即,所以的对称中心为,【小问2详解】令∵,∴,由图可知,只需满足或,即或,∴在上的单调递增区间是和20、(1);(2)【解析】(1)由偶函数的定义可得恒成立,即可求出值;(2)由题意可分离参数得出有解,求出的值域即可.【详解】(1)是偶函数,恒成立,,解得;(2)由(1)知,由得,令,当时,,则,故时,方程在区间上有实数根,故的取值范围为.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论