江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题含解析_第1页
江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题含解析_第2页
江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题含解析_第3页
江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题含解析_第4页
江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市常州高级中学分校2026届数学高二上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知四棱柱ABCD-A1B1C1D1的底面是边长为2的正方形,侧棱与底面垂直,若点C到平面AB1D1的距离为,则直线与平面所成角的余弦值为()A. B.C. D.2.在等比数列中,,,则等于A. B.C. D.或3.设变量,满足约束条件则的最小值为()A.3 B.-3C.2 D.-24.已知为原点,点,以为直径的圆的方程为()A. B.C. D.5.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.16.对于实数a,b,c,下列命题为真命题的是()A.若,则 B.若,则C.若,则 D.若,则7.若双曲线离心率为,过点,则该双曲线的方程为()A. B.C. D.8.若双曲线的离心率为,则其渐近线方程为A.y=±2x B.y=C. D.9.一质点从出发,做匀速直线运动,每秒的速度为秒后质点所处的位置为()A. B.C. D.10.设是双曲线的一个焦点,,是的两个顶点,上存在一点,使得与以为直径的圆相切于,且是线段的中点,则的渐近线方程为A. B.C. D.11.已知椭圆的离心率为,双曲线的离心率为,则()A. B.C. D.12.如图,在三棱锥中,,,,点在平面内,且,设异面直线与所成角为,则的最大值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一道数学难题,在半小时内,甲能解决的概率是,乙能解决的概率是,两人试图独立地在半小时内解决它,则问题得到解决的概率是________.14.一个高为2的圆柱,底面周长为2,该圆柱的表面积为.15.若函数在区间内存在最大值,则实数的取值范围是____________.16.已知双曲线的左、右焦点分别为,右顶点为,为双曲线上一点,且,线段的垂直平分线恰好经过点,则双曲线的离心率为_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,且过点.(1)求椭圆的方程;(2)若,分别为椭圆的上,下顶点,过点且斜率为的直线交椭圆于另一点(异于椭圆的右顶点),交轴于点,直线与直线相交于点.求证:直线的斜率为定值.18.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率19.(12分)为让“双减”工作落实到位,某中学积极响应上级号召,全面推进中小学生课后延时服务,推行课后服务“”模式,开展了内容丰富、形式多样、有利于学生身心成长的活动.该中学初一共有700名学生其中男生400名、女生300名.为让课后服务更受欢迎,该校准备推行体育类与艺术类两大类活动于2021年9月在初一学生中进行了问卷调查.(1)调查结果显示:有的男学生和的女学生愿意参加体育类活动,其他男学生与女学生都不愿意参加体育类活动,请完成下边列联表.并判断是否有的把握认为愿意参加体育类活动与学生的性别相关?愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生女学生合计(2)在开展了两个月活动课后,为了了解学生的活动课情况,在初一年级学生中按男女比例分层抽取7名学生调查情况,并从这7名学生中随机选择3名学生进行展示,用X表示选出进行展示的3名学生中女学生的人数,求随机变量X的分布列和数学期望.0.1000.0500.0250.0102.7063.8415.0246.635参考公式:,其中.20.(12分)如图,在直三棱柱中,,分别是棱的中点,点在线段上.(1)当直线与平面所成角最大时,求线段的长度;(2)是否存在这样的点,使平面与平面所成的二面角的余弦值为,若存在,试确定点的位置,若不存在,说明理由.21.(12分)已知椭圆的右顶点为,上顶点为.离心率为,.(1)求椭圆的标准方程;(2)若,是椭圆上异于长轴端点的两点(斜率不为0),已知直线,且,垂足为,垂足为,若,且的面积是面积的5倍,求面积的最大值.22.(10分)已知抛物线的方程为,点,过点的直线交抛物线于,两点(1)是否为定值?若是,求出该定值;若不是,说明理由;(2)若点是直线上的动点,且,求面积的最小值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】先由等面积法求得的长,再以为坐标原点,建立如图所示的空间直角坐标系,运用线面角的向量求解方法可得答案【详解】如图,连接交于点,过点作于,则平面,则,设,则,则根据三角形面积得,代入解得以为坐标原点,建立如图所示的空间直角坐标系则,,设平面的法向量为,,,则,即,令,得,所以直线与平面所成的角的余弦值为,故选:2、D【解析】∵为等比数列,∴,又∴为的两个不等实根,∴∴或∴故选D3、D【解析】转化为,则最小即直线在轴上的截距最大,作出不等式组表示的可行域,数形结合即得解【详解】转化为,则最小即直线在轴上的截距最大作出不等式组表示的可行域如图中阴影部分所示,作出直线,平移该直线,当直线经过时,在轴上的截距最大,最小,此时,故选:D4、A【解析】求圆的圆心和半径,根据圆的标准方程即可求解﹒【详解】由题知圆心为,半径,∴圆方程为﹒故选:A﹒5、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B6、D【解析】判断不等式的真假,就是要考虑在不等式的变形过程中是否遵守不等式变形的规则.【详解】若,令,,,,,故A错误;若,令c=0,则,故B错误;若,令a=-1,b=-2,,,故C错误;∵,故,根据不等式运算规则,在不等式的两边同时乘以或除以一个正数,不等式的方向不变,故D正确.故选:D.7、B【解析】分析可得,再将点代入双曲线的方程,求出的值,即可得出双曲线的标准方程.【详解】,则,,则双曲线的方程为,将点的坐标代入双曲线的方程可得,解得,故,因此,双曲线的方程为.故选:B8、B【解析】双曲线的离心率为,渐进性方程为,计算得,故渐进性方程为.【考点定位】本小题考查了离心率和渐近线等双曲线的性质.9、A【解析】利用空间向量的线性运算即可求解.【详解】2秒后质点所处的位置为.故选:A【点睛】本题考查了空间向量的线性运算,考查了基本知识掌握的情况以及学生的综合素养,属于基础题.10、C【解析】根据图形的几何特性转化成双曲线的之间的关系求解.【详解】设另一焦点为,连接,由于是圆的切线,则,且,又是的中点,则是的中位线,则,且,由双曲线定义可知,由勾股定理知,,,即,渐近线方程为,所以渐近线方程为故选C.【点睛】本题考查双曲线的简单的几何性质,属于中档题.11、D【解析】根据给定的方程求出离心率,的表达式,再计算判断作答.【详解】因椭圆的离心率为,则有,因双曲线的离心率为,则有,所以.故选:D12、D【解析】设线段的中点为,连接,过点在平面内作,垂足为点,证明出平面,然后以点为坐标原点,、、分别为、、轴的正方向建立空间直角坐标系,设,其中,且,求出的最大值,利用空间向量法可求得的最大值.【详解】设线段的中点为,连接,,为的中点,则,,则,,同理可得,,,平面,过点在平面内作,垂足为点,因为,所以,为等边三角形,故为的中点,平面,平面,则,,,平面,以点为坐标原点,、、分别为、、轴的正方向建立如下图所示的空间直角坐标系,因为是边长为的等边三角形,为的中点,则,则、、、,由于点在平面内,可设,其中,且,从而,因为,则,所以,,故当时,有最大值,即,故,即有最大值,所以,.故选:D.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分甲解决乙不能解决,甲不能解决乙能解决,甲能解决乙也能解决三类,利用独立事件的概率求解.【详解】因为甲能解决的概率是,乙能解决的概率是,所以问题得到解决的概率是,故答案为:14、6【解析】2r=2,r=1,S表=2rh+2r2=4+2=6.15、【解析】首先利用导数判断函数的单调性,再根据函数在开区间内存在最大值,可判断极大值点就是最大值点,列式求解.【详解】由题可知:所以函数在单调递减,在单调递增,故函数的极大值为.所以在开区间内的最大值一定是又,所以得实数的取值范围是故答案为:【点睛】关键点点睛:由函数在开区间内若存在最大值,即极大值点在区间内,同时还得满足极大值点是最大值,还需列不等式,不要忽略这个不等式.16、【解析】在中求出,再在中求出,即可得到的齐次式,化简即可求出离心率【详解】设双曲线:,,不妨设为双曲线右支上一点因为线段的垂直平分线恰好经过点,且,所以,在中,,所以,,在中,,所以,,因此,,化简得,,即,而,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)根据条件求出,即可写出椭圆方程;(2)设直线的方程为,联立直线与椭圆,可表示出坐标,继而得出直线的方程,令可得的坐标,即可求出直线的斜率并得出定值.【详解】(1)设椭圆的焦距为,则①,②,又③,由①②③解得,,,所以椭圆的标准方程为.(2)证明:易得,,直线的方程为,因为直线不过点,所以,由,得,所以,从而,,直线的斜率为,故直线的方程为.令,得,直线斜率.所以直线的斜率为定值.【点睛】本题考查椭圆的方程的求法,考查椭圆中的定值问题,属于中档题.18、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.19、(1)详见解析;(2)详见解析.【解析】(1)根据初一男生数和女生数,结合有的男学生和的女学生,愿意参加体育类活动求解;计算的值,再与临界值表对照下结论;(2)根据这7名学生中男生有4名,女生有3名,随机选择3名由抽到女学生的人数X可能为0,1,2,3,分别求得其概率,列出分布列,再求期望.【小问1详解】解:因为初一共有700名学生其中男生400名、女生300名,且有的男学生和的女学生,所以愿意参加体育类活动的男生有300名,女生有200名,则列联表如下:愿意参加体育活动情况性别愿意参加体育类活动不愿意参加体育类活动合计男学生300100400女学生200100300合计500200700,所以有的把握认为愿意参加体育类活动与学生的性别相关;【小问2详解】这7名学生中男生有4名,女生有3名,随机选择3名学生进行展示,抽到女学生的人数X可能为0,1,2,3,所以,,所以随机变量X分布列如下:X0123p20、(1)(2)存在,A1P=【解析】(1)作出线面角,因为对边为定值,所以邻边最小时线面角最大;(2)建立空间直角坐标系,由向量法求二面角列方程可得.【小问1详解】直线PN与平面A1B1C1所成的角即为直线PN与平面ABC所成角,过P作,即PN与面ABC所成的角,因为PH为定值,所以当NH最小时线面角最大,因为当P为中点时,,此时NH最小,即PN与平面ABC所成角最大,此时.【小问2详解】以AB,AC,AA1为x,y,z轴建立空间坐标系,则:A(0,0,0),B(1,0,0),C(0,1,0),A1(0,0,1)设=,,,设平面PMN的法向量为,则,即,解得,平面AC1C的法向量为,.所以P点为A1B1的四等分点,且A1P=.21、(1)(2)面积的最大值为【解析】(1)由离心率为,,得,解得,,,进而可得答案(2)设直线的方程为,,,,,联立直线与椭圆的方程,结合韦达定理可得,,由弦长公式可得,点到直线的距离,则,,由的面积是面积的5倍,解得,再计算的最大值,即可【小问1详解】解:因为离心率为,,所以,解得,,,所以【小问2详解】解:设直线的方程为,,,,,联立,得,所以,,所以,点到直线的距离,所以,,因为的面积是面积的5倍,所以所以或,又因为,是椭圆上异于长轴端点的两点,所以,所以,令,所以,因为在上单调递增,所以,(当时,取等号),所以面积的最大值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论