甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题含解析_第1页
甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题含解析_第2页
甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题含解析_第3页
甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题含解析_第4页
甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省靖远县第二中学2026届数学高二上期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为()A. B.C. D.2.已知直线与垂直,则为()A.2 B.C.-2 D.3.下列命题中正确的是()A.抛物线的焦点坐标为B.抛物线的准线方程为x=−1C.抛物线的图象关于x轴对称D.抛物线的图象关于y轴对称4.有一机器人的运动方程为,(是时间,是位移),则该机器人在时刻时的瞬时速度为()A. B.C. D.5.在四面体中,点G是的重心,设,,,则()A. B.C. D.6.过抛物线的焦点的直线交抛物线于不同的两点,则的值为A.2 B.1C. D.47.在平面直角坐标系中,已知点,,,,直线AP,BP相交于点P,且它们斜率之积是.当时,的最小值为()A. B.C. D.8.在中,角、、所对的边分别是、、.已知,,且满足,则的取值范围为()A. B.C. D.9.已知函数,若,,则实数的取值范围是A. B.C. D.10.执行如图所示的程序框图,若输出的的值为,则判断框中应填入()A.? B.?C.? D.?11.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.112.已知数列满足,则()A.32 B.C.1320 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,则数列的前2022项的和为___________.14.为和的等差中项,则_____________.15.函数y=x3+ax2+bx+a2在x=1处有极值10,则a=________.16.如图,在直三棱柱中,,为中点,则平面与平面夹角的正切值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,水平桌面上放置一个棱长为4的正方体的水槽,水面高度恰为正方体棱长的一半,在该正方体侧面有一个小孔(小孔的大小忽略不计)E,E点到CD的距离为3,若该正方体水槽绕CD倾斜(CD始终在桌面上).(1)证明图2中的水面也是平行四边形;(2)当水恰好流出时,侧面与桌面所成的角的大小.18.(12分)已知数列的前项和,且(1)证明:数列为等差数列;(2)设,记数列的前项和为,若,对任意恒成立,求实数的取值范围19.(12分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长20.(12分)已知抛物线C的焦点为,N为抛物线上一点,且(1)求抛物线C的方程;(2)过点F且斜率为k的直线l与C交于A,B两点,,求直线l的方程21.(12分)已知正项等差数列满足:,且,,成等比数列(1)求的通项公式;(2)设的前n项和为,且,求的前n项和22.(10分)已知抛物线的焦点为,点为抛物线上一点,且.(1)求抛物线方程;(2)直线与抛物线相交于两个不同的点,为坐标原点,若,求实数的值;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线定义,结合三角形相似以及已知条件,求得,则问题得解.【详解】根据题意,过作垂直于准线,垂足为,过作垂直于准线,垂足为,如下所示:因为,又//,,则,故可得,又△△,则,即,解得,故抛物线方程为:.故选:.2、A【解析】利用一般式中直线垂直的系数关系列式求解.【详解】因为直线与垂直,故选:A.3、C【解析】根据抛物线的性质逐项分析可得答案.【详解】抛物线的焦点坐标为,故A错误;抛物线的准线方程为,故B错误;抛物线的图象关于x轴对称,故C正确,D错误;故选:C.4、B【解析】对运动方程求导,根据导数意义即速度求得在时的导数值即可.【详解】由题知,,当时,,即速度为7.故选:B5、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B6、D【解析】本题首先可以通过直线交抛物线于不同的两点确定直线的斜率存在,然后设出直线方程并与抛物线方程联立,求出以及的值,然后通过抛物线的定义将化简,最后得出结果【详解】因为直线交抛物线于不同的两点,所以直线的斜率存在,设过抛物线的焦点的直线方程为,由可得,,因为抛物线的准线方程为,所以根据抛物线的定义可知,,所以,综上所述,故选D【点睛】本题考查了抛物线的相关性质,主要考查了抛物线的定义、过抛物线焦点的直线与抛物线相交的相关性质,考查了计算能力,是中档题7、A【解析】设出点坐标,求得、所在直线的斜率,由斜率之积是列式整理即可得到点的轨迹方程,设,根据双曲线的定义,从而求出的最小值;【详解】解:设点坐标为,则直线的斜率;直线的斜率由已知有,化简得点的轨迹方程为又,所以点的轨迹方程为,即点的轨迹为以、为顶点的双曲线的左支(除点),因为,设,由双曲线的定义可知,所以,当且仅当、、三点共线时取得最小值,因为,所以,所以,即的最小值为;故选:A8、D【解析】利用正弦定理边角互化思想化简得出,利用余弦定理化简得出,结合,根据函数在上的单调性可求得的取值范围.【详解】且,所以,由正弦定理得,即,,,所以,,则,由余弦定理得,,则,由于双勾函数在上单调递增,则,即,所以,.因此,的取值范围为.故选:D.【点睛】本题考查三角形内角余弦值的取值范围的求解,考查了余弦定理以及正弦定理边角互化思想的应用,考查计算能力,属于中等题.9、A【解析】函数,若,,可得,解得或,则实数的取值范围是,故选A.10、C【解析】本题为计算前项和,模拟程序,实际计算求和即可得到的值.【详解】由题意可知:输出的的值为数列的前项和.易知,则,令,解得.即前7项的和.为故判断框中应填入“?”.故选:C.11、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A12、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设等差数列的公差为,根据题中条件,求出首项和公差,得出前项和,再由裂项相消的方法,即可求出结果.【详解】设等差数列的公差为,因为,,所以,解得,因此,所以,所以数列的前2022项的和为.故答案:.14、【解析】利用等差中项的定义可求得结果.【详解】由等差中项的定义可得.故答案为:.15、4【解析】∵y′=3x2+2ax+b,∴或当a=-3,b=3时,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=416、【解析】由条件可得均为等腰直角三角形,从而,先证明平面,从而,即得到为平面与平面夹角的平面角,从而可求解.【详解】由,则,则在直三棱柱中,平面,又平面,则又,所以平面平面,所以由由条件可得均为等腰直角三角形,则所以,即,由所以平面,又平面所以,即为平面与平面夹角的平面角.在直角中,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由水的体积得出,进而得出,,从而证明图2中的水面也是平行四边形;(2)在平面内,过点作,交于,由四边形是平行四边形,得出侧面与桌面所成的角即侧面与水面所成的角,再由直角三角形的边角关系得出其夹角.【小问1详解】由题意知,水的体积为,如图所示,设正方体水槽倾斜后,水面分别与棱,,,交于,,,,则,水的体积为,,即,,故四边形为平行四边形,即,且又,,,四边形为平行四边形,即图2中的水面也是平行四边形;【小问2详解】在平面内,过点作,交于,则四边形是平行四边形,,,侧面与桌面所成的角即侧面与水面所成的角,即侧面与平面所成的角,即为所求,而,在中,,侧面与桌面所成角的为18、(1)证明见解析(2)【解析】(1)利用可得答案;(2)利用错位相减可得,转化为对任意,恒成立,求出的最大值可得答案小问1详解】当时,由,得或(舍去),由,得,①当时,,②由①-②,得,整理得,因为,所以所以是首项为1,公差为1的等差数列【小问2详解】由(1)可得,所以,③,④由③-④,得,即,由得,所以,即,该式对任意恒成立,因此,所以的取值范围是19、(1)(2)或【解析】(1)建立空间直角坐标系,利用向量法求得直线与所成角的余弦值.(2)结合直线与平面所成的角,利用向量法列方程,化简求得的长.【小问1详解】依题意点在平面ABC上的射影为线段AC的中点D,所以平面,,由于,所以,以为空间坐标原点建立如图所示空间直角坐标系,,,当是等边三角形时,,.设直线与所成角为,则.【小问2详解】设,则,,设平面的法向量为,则,故可设,设直线与平面所成角为,则,化简的,解得或,也即或.20、(1)(2)或【解析】(1)抛物线的方程为,利用抛物线的定义求出点N,代入抛物线方程即可求解.(2)设直线的方程为,将直线与抛物线方程联立,利用韦达定理以及焦半径公式可得或,即求.【小问1详解】抛物线的方程为,设,依题意,由抛物线定义,即.所以,又由,得,解得(舍去),所以抛物线的方程为.【小问2详解】由(1)得,设直线的方程为,,,由,得.因为,故所以.由题设知,解得或,因此直线方程为或.21、(1);(2).【解析】(1)利用等差数列的通项公式结合条件即求;(2)利用条件可得,然后利用错位相减法即求.【小问1详解】设等差数列公差为d,由得,即,化简得,又,,成等比数列,则,即,将代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论