版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东清远恒大足球学校2026届高二数学第一学期期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.日常饮用水通常都是经过净化的,随若水纯净度的提高,所需净化费用不断增加.已知水净化到纯净度为时所需费用单位:元为那么净化到纯净度为时所需净化费用的瞬时变化率是()元/t.A. B.C. D.2.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.3.已知平面的一个法向量为,且,则点A到平面的距离为()A. B.C. D.14.1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题解法传至欧洲,西方人称之为“中国剩余定理”.现有这样一个问题:将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列,则=()A.130 B.132C.140 D.1445.如图,在正方体中,点E是上底面的中心,则异面直线与所成角的余弦值为()A. B.C. D.6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有()A.24种 B.6种C.4种 D.12种7.某海关缉私艇在执行巡逻任务时,发现其所在位置正西方向20nmile处有一走私船只,正以30nmile/h的速度向北偏东30°的方向逃窜,若缉私艇突然发生机械故障,20min后才以的速度开始追赶,则在走私船只不改变航向和速度的情况下,缉私艇追上走私船只的最短时间为()A.1h B.C. D.8.不等式的解集为()A. B.C.或 D.或9.已知双曲线的离心率为,则双曲线C的渐近线方程为()A. B.C. D.10.函数区间上有()A.极大值为27,极小值为-5 B.无极大值,极小值为-5C.极大值为27,无极小值 D.无极大值,无极小值11.几何学史上有一个著名的米勒问题:“设点、是锐角的一边上的两点,试在边上找一点,使得最大的.”如图,其结论是:点为过、两点且和射线相切的圆的切点.根据以上结论解决一下问题:在平面直角坐标系中,给定两点,,点在轴上移动,当取最大值时,点的横坐标是()A.B.C.或D.或12.用数学归纳法证明“”的过程中,从到时,不等式的左边增加了()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某班学号的学生铅球测试成绩如下表:学号12345678成绩9.17.98.46.95.27.18.08.1可以估计这8名学生铅球测试成绩的第25百分位数为___________.14.已知是椭圆的两个焦点,分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.15.不等式是的解集为______16.数学家欧拉年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线,已知的顶点、,其欧拉线的方程为,则的外接圆方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,P(5,a)为抛物线C上一点,且|PF|=8(1)求抛物线C的方程;(2)过点F的直线l与抛物线C交于A,B两点,以线段AB为直径的圆过Q(0,﹣3),求直线l的方程18.(12分)已知函数.(1)讨论的单调性;(2)若,当时,恒成立,求实数的取值范围.19.(12分)在①成等差数列;②成等比数列;③这三个条件中任选一个,补充在下面的问题中,并对其求解.问题:已知为数列的前项和,,且___________.(1)求数列的通项公式;(2)记,求数列前项和.注:如果选择多个条件分别解答,按第一个解答计分.20.(12分)设椭圆:()的离心率为,椭圆上一点到左右两个焦点、的距离之和是4.(1)求椭圆的方程;(2)已知过的直线与椭圆交于、两点,且两点与左右顶点不重合,若,求四边形面积的最大值.21.(12分)已知四边形是空间直角坐标系中的一个平行四边形,且,,(1)求点的坐标;(2)求平行四边形的面积22.(10分)已知函数(其中为自然对数底数)(1)讨论函数的单调性;(2)当时,若恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意求出函数的导函数,然后令即可求解【详解】因为,所以,则,故选:2、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A3、B【解析】直接由点面距离的向量公式就可求出【详解】∵,∴,又平面的一个法向量为,∴点A到平面的距离为故选:B4、A【解析】分析数列的特点,可知其是等差数列,写出其通项公式,进而求得结果,【详解】被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以,故,故选:A.5、B【解析】建立空间直角坐标系,利用向量夹角求解.【详解】以为原点,为轴正方向建立空间直角坐标系如图所示,设正方体棱长为2,所以,所以异面直线与所成角的余弦值为.故选:B6、B【解析】由已知可得只需对剩下3人全排即可【详解】解:甲、乙、丙、丁四人站成一列,要求甲站在最前面,则只需对剩下3人全排即可,则不同的排法共有,故选:B7、A【解析】设小时后,相遇地点为,在三角形中根据题目条件得出,再在三角形中,由勾股定理即可求出.【详解】以缉私艇为原点,建立如下图所示的直角坐标系.图中走私船所在位置为,设缉私艇追上走私船的最短时间为,相遇地点为.则,走私船以的速度向北偏东30°的方向逃窜,60°.因为20min后缉私艇才以的速度开始追赶走私船,所以20min走私船行走了,到达.在三角形中,由余弦定理知:,则,所以.在三角形中,,,有:,化简得:,则.缉私艇追上走私船只的最短时间为1h.故选:A.点睛】8、A【解析】先将分式不等式转化为一元二次不等式,然后求解即可【详解】由,得,解得,所以原不等式的解集为,故选:A9、B【解析】根据a的值和离心率可求得b,从而求得渐近线方程.【详解】由双曲线的离心率为,知,则,即有,故,所以双曲线C的渐近线方程为,即,故选:B.10、B【解析】求出得出的单调区间,从而可得答案.【详解】当时,,单调递减.当时,,单调递增.所以当时,取得极小值,极小值为,无极大值.故选:B11、A【解析】根据米勒问题的结论,点应该为过点、的圆与轴的切点,设圆心的坐标为,写出圆的方程,并将点、的坐标代入可求出点的横坐标.【详解】解:设圆心的坐标为,则圆的方程为,将点、的坐标代入圆的方程得,解得或(舍去),因此,点的横坐标为,故选:A.12、B【解析】依题意,由递推到时,不等式左边为,与时不等式的左边作差比较即可得到答案【详解】用数学归纳法证明等式的过程中,假设时不等式成立,左边,则当时,左边,∴从到时,不等式的左边增加了故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用百分位数的计算方法即可求解.【详解】将以上数据从小到大排列为,,,,,,,;%,则第25百分位数第项和第项的平均数,即为.故答案为:.14、【解析】由题可设,则,然后利用数量积坐标表示及二次函数的性质即得.【详解】由题可得,,设,因为点P在线段AB上,所以,∴,∴当时,的最小值为.故答案为:.15、【解析】由可得,结合分式不等式的解法即可求解.【详解】由可得,整理可得:,则,解可得:.所以不等式是的解集为:.故答案为:.16、【解析】求出线段的垂直平分线方程,与欧拉线方程联立,求出的外接圆圆心坐标,并求出外接圆的半径,由此可得出的外接圆方程.【详解】直线的斜率为,线段的中点为,所以,线段的垂直平分线的斜率为,则线段垂直平分线方程为,即,联立,解得,即的外心为,所以,的外接圆的半径为,因此,的外接圆方程为.故答案为:.【点睛】方法点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线;(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)2x﹣y﹣6=0﹒【解析】(1)根据抛物线焦半径公式构造方程求得,从而得到结果(2)设直线,代入抛物线方程可得韦达定理的形式,根据可构造方程求得,从而得到直线方程【小问1详解】由抛物线定义可知:,解得:,抛物线的方程为:【小问2详解】由抛物线方程知:,设直线,,,,,联立方程,得:,,,以线段为直径的圆过点,,,解得:,直线的方程为:,即18、(1)答案见解析;(2).【解析】(1)求得,分、两种情况讨论,分析导数的符号变化,由此可得出函数的单调递增区间和递减区间;(2)利用参变量分离法可得出对任意的恒成立,构造函数,其中,利用导数求出函数在上的最小值,由此可求得实数的取值范围.【小问1详解】解:函数的定义域为,.因为,由,可得.①当时,由可得,由可得.此时,函数的单调递减区间为,单调递增区间为;②当时,由可得,由可得,此时,函数的单调递增区间为,单调递减区间为.综上所述,当时,函数的单调递减区间为,单调递增区间为;当时,函数单调递减区间为,单调递增区间为【小问2详解】解:当且时,由,可得,令,其中,.当时,,此时函数单调递减,当时,,此时函数单调递增,则,.19、(1)(2)【解析】(1)由可知数列是公比为的等比数列,若选①:结合等差数列等差中项的性质计算求解;若选②:利用等比数列等比中项的性质计算求解,若选③:利用直接计算;(2)根据对数的运算,可知数列为等差数列,直接求和即可.【小问1详解】由,当时,,即,即,所以数列是公比为的等比数列,若选①:由,即,,所以数列的通项公式为;若选②:由,所以,所以数列的通项公式为;若选③:由,即,所以数列的通项公式为;【小问2详解】由(1)得,所以数列为等差数列,所以.20、(1);(2)6.【解析】(1)本小题根据题意先求,,,再求椭圆的标准方程;(2)本小题先设过的直线的方程,再根据题意表示出四边形的面积,最后求最值即可.【详解】解:(1)∵椭圆上一点到左右两个焦点、的距离之和是4,∴即,∵,∴,又∵,∴.∴椭圆的标准方程为;(2)设点、的坐标为,,因为直线过点,所以可设直线方程为,联立方程,消去可得:,化简整理得,其中,所以,,因为,所以四边形是平行四边形,设平面四边形的面积为,则,设,则(),所以,因为,所以,,所以四边形面积的最大值为6.【点睛】本题考查椭圆的标准方程,相交弦等问题,是偏难题.21、(1);(2)【解析】(1)由题设可得,结合向量的共线坐标表示求的坐标;(2)向量的坐标运算求边长,由余弦定理求,进而求其正弦值,再应用三角形面积公式求面积.【小问1详解】由题设,,令,则,∴,可得,故.【小问2详解】由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人力资源招聘与面试技巧训练
- 机械设计变更申请书范文
- 班规编订及班级管理教学设计方案
- 著名中医抗肝病经验集萃
- 小学科学实验操作指南及教案
- 2026届福建省龙海市程溪中学语文高三第一学期期末教学质量检测试题含解析
- 工期治理管控交流(可编辑)
- 工会基础业务知识课件
- 离子键离子晶体课件-高二化学苏教版选择性必修()
- 工程量清单投标报价书写指导
- 小红书2025年9-10月保险行业双月报
- 高二电磁学考试题及答案
- 养老托管合同协议
- 安徽省芜湖市2024-2025学年度第一学期期末考试八年级数学试卷
- 2025成都易付安科技有限公司第一批次招聘15人参考考试试题及答案解析
- 2025年翔安区社区专职工作者招聘备考题库及一套参考答案详解
- 2025年融资融券业务模拟考试题库及答案
- 湖南省长郡二十校联盟2025-2026学年高三上学期12月考试数学试卷
- 教育培训机构招生方案设计与落地执行
- 小流浪猫知识题库及答案
- 中建商务经理述职报
评论
0/150
提交评论