贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题含解析_第1页
贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题含解析_第2页
贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题含解析_第3页
贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题含解析_第4页
贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省北京师范大学贵阳附中2026届高二上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知、是椭圆和双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,则()A.2 B.3C.4 D.52.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.3.已知函数,其导函数的图象如图所示,则()A.在上为减函数 B.在处取极小值C.在上为减函数 D.在处取极大值4.已知直线与直线平行,则实数a的值为()A.1 B.C.1或 D.5.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.6.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.7.设函数是奇函数的导函数,且,当时,,则不等式的解集为()A. B.C. D.8.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.9.双曲线的渐近线方程为()A. B.C. D.10.已知数列为等比数列,则“为常数列”是“成等差数列”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.命题“,”否定形式是()A., B.,C., D.,12.过抛物线的焦点引斜率为1的直线,交抛物线于,两点,则()A.4 B.6C.8 D.10二、填空题:本题共4小题,每小题5分,共20分。13.函数满足,且,则的最小值为___________.14.已知,命题p:,;命题q:,,且为真命题,则a的取值范围为______15.设变量x,y满足约束条件则的最大值为___________.16.四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,侧面ABE⊥底面BCDE,BC=2,CD=4(I)证明:AB⊥面BCDE;(II)若AD=2,求二面角C-AD-E的正弦值三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在直三棱柱ABC-A1B1C1中,底面ABC是等边三角形,D是AC的中点.(1)证明:AB1//面BC1D;(2)若AA1=AB,求二面角B1-AC-C1的余弦值.18.(12分)已知椭圆C:短轴长为2,且点在C上(1)求椭圆C的标准方程;(2)设、为椭圆的左、右焦点,过的直线l交椭圆C与A、B两点,若的面积是,求直线l的方程19.(12分)已知数列满足,记数列的前项和为,且,(1)求数列的通项公式;(2)若,求数列的前100项和20.(12分)已知:,,:,,且为真命题,求实数的取值范围.21.(12分)球形物体天然萌,某食品厂沿袭老字号传统,独家制造并使用球形玻璃瓶用于售卖酸梅汤,其中瓶子的制造成本c(分)与瓶子的半径r(cm)的平方成正比,且当cm时,制造成本c为3.2π分,已知每出售1mL的酸梅汤,可获得0.2分,且制作的瓶子的最大半径为6cm(1)写出每瓶酸梅汤的利润y与r的关系式(提示:);(2)瓶子半径多大时,每瓶酸梅汤的利润最大,最大为多少?(结果用含π的式子表示)22.(10分)过点作圆的两条切线,切点分别为A,B;(1)求直线AB的方程;(2)若M为圆上的一点,求面积的最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依据椭圆和双曲线定义和题给条件列方程组,得到关于椭圆的离心率和双曲线的离心率的关系式,即可求得的值.【详解】设椭圆的长轴长为,双曲线的实轴长为,令,不妨设则,解之得代入,可得整理得,即,也就是故选:C2、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.3、C【解析】首先利用导函数的图像求和的解,进而得到函数的单调区间和极值点.【详解】由导函数的图象可知:当时,或;当时,或,所以的单调递增区间为和,单调递减区间为和,故在处取得极大值,在处取得极小值,在处取得极大值.故选:C.4、A【解析】根据两直线平行的条件列方程,化简求得,检验后确定正确答案.【详解】由于直线与直线平行,所以,或,当时,两直线方程都为,即两直线重合,所以不符合题意.经检验可知符合题意.故选:A5、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B6、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B7、D【解析】设,则,分析可得为偶函数且,求出的导数,分析可得在上为减函数,进而分析可得上,,在上,,结合函数的奇偶性可得上,,在上,,又由即,则有或,据此分析可得答案【详解】根据题意,设,则,若奇函数,则,则有,即函数为偶函数,又由,则,则,,又由当时,,则在上为减函数,又由,则在上,,在上,,又由为偶函数,则在上,,在上,,即,则有或,故或,即不等式的解集为;故选:D8、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C9、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题10、C【解析】先考虑充分性,再考虑必要性即得解.【详解】解:如果为常数列,则成等差数列,所以“为常数列”是“成等差数列”的充分条件;等差数列,所以,所以数列为,所以数列是常数列,所以“为常数列”是“成等差数列”的必要条件.所以“为常数列”是“成等差数列”的充要条件.故选:C11、C【解析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“,是特称命题,所以其否定是全称命题,即为,故选:C12、C【解析】由题意可得,的方程为,设、,联立直线与抛物线方程可求,利用抛物线的定义计算即可求解.【详解】由上可得:焦点,直线的方程为,设,,由,可得,则有,由抛物线的定义可得:,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】化简得出,由化简后根据均值不等式建立不等式,求解二次不等式即可得解.【详解】,由得:,(当且仅当时取等号),所以的最小值为6.故答案为:614、【解析】先求出命题p,q为真命题时的a的取值范围,根据为真可知p,q都是真命题,即可求得答案.【详解】命题p:,为真时,有,命题q:,为真时,则有,即,故为真命题时,且,即,故a的取值范围为,故答案为:15、【解析】根据线性约束条件画出可行域,把目标函数转化为,然后根据直线在轴上截距最大时即可求出答案.【详解】画出可行域,如图,由,得,由图可知,当直线过点时,有最大值,且最大值为.故答案为:.16、(Ⅰ)详见解析;(Ⅱ).【解析】(Ⅰ)推导出BE⊥BC,从而BE⊥平面ABC,进而BE⊥AB,由面ABE⊥面BCDE,得AB⊥BC,由此能证明AB⊥面BCDE(Ⅱ)以B为原点,所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角C﹣AD﹣E的正弦值【详解】由侧面底面,且交线为,底面为矩形所以平面,又平面,所以由面面,同理可证,又面在底面中,,由面,故,以为原点,所在直线分别为轴建立空间直角坐标系,则,设平面的法向量,则,取所以平面的法向量,同理可求得平面的法向量.设二面角的平面角为,则故所求二面角的正弦值为.【点睛】本题考查线面垂直的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1),连接,证明,再根据线面平行的判定定理即可得证;(2)说明平面,取的中点F,连接,以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:记,连接,由直棱柱的性质可知四边形是矩形,则E为的中点.因为D是的中点,所以,又平面平面,所以平面;【小问2详解】因为底面是等边三角形,D是的中点,所以,由直棱柱的性质可知平面平面,平面平面,面,所以平面,取的中点F,连接,则两两垂直,故以D为原点,分别以的方向为x,y,z轴的正方向,建立如图所示的空间直角坐标系,设,则,从而,设平面的法向量为,则,令x=2,得,同理平面的一个法向量为,则cosm由图可知二面角的平面角为锐角,所以二面角B1-AC-C1的余弦值为.18、(1);(2)或.【解析】(1)根据短轴长求出b,根据M在C上求出a;(2)根据题意设直线l为,与椭圆方程联立得根与系数关系,根据=即可求出m的值.【小问1详解】∵短轴长为2,∴,∴,又∵点在C上,∴,∴,∴椭圆C的标准方程为;【小问2详解】由(1)知,∵当直线l斜率为0时,不符合题意,∴设直线l的方程为:,联立,消x得:,∵,∴设,,则,∵,∴,∴,即,解得,∴直线l的方程为:或.19、(1)(2)【解析】(1)由题意得出,然后与原式结合,两式相减并化简求出,最后根据等差数列的定义求得答案;(2)结合(1),分别讨论,和三种情况,分别求出,进而求出.【小问1详解】因为,所以,两式相减得,所以又,所以数列是首项为,公差为2的等差数列,所以.【小问2详解】由得,当时,,当时,,当时,,所以.20、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.21、(1),(2)当时,每瓶酸梅汤的利润最大,最大利润为28.8π【解析】(1)直接由条件写出关系式即可;(2)直接求导确定单调性后,求出最大值即可.【小问1详解】设瓶子的制造成本c与瓶子的半径r的平方成正比的比例系数等于k,则瓶子的制造成本,由题意,当时,∴,即瓶子的制造成本∴每瓶酸梅汤的利润是,∴每瓶酸梅汤的利润关于r的函数关系式为:,【小问2详解】由(1)知,则,令,则,当时,;当时,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论