版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)数学苏教版七年级下册期末资料专题真题及解析一、选择题1.下列运算正确的是()A. B.C. D.答案:C解析:C【分析】直接利用同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法依次计算即可.【详解】解:A、,故选项错误,不符合题意;B、,故选项错误,不符合题意;C、,故选项正确,符合题意;D、,故选项错误,不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法,解题的关键是掌握相关的运算法则.2.如图,下面结论正确的是()A.和是同位角 B.和是内错角C.和是同旁内角 D.和是内错角答案:D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答【详解】解:A、由同位角的概念可知,∠1与∠2不是同位角,故A选项错误;B、由内错角的概念可知,∠2与∠3不是内错角,故B选项错误;C、和是对顶角,故C错误;D、由内错角的概念可知,∠1与∠4是内错角,故D选项正确.故选:D.【点睛】本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3.如果关于x的不等式(a+2016)x>a+2016的解集为x<1,那么a的取值范围是()A.a>-2016 B.a<-2016 C.a>2016 D.a<2016答案:B解析:B【详解】【分析】根据已知不等式的解集,确定出a+2016为负数,求出a的范围即可.【详解】∵关于x的不等式(a+2016)x>a+2016的解集为x<1,∴a+2016<0,解得:a<-2016,故选B【点睛】此题考查了不等式的解集,熟练掌握不等式的基本性质是解本题的关键.4.若m>n,则下列不等式一定成立的是()A.﹣2m>﹣2n B. C.m+2>n+2 D.3﹣m>3﹣n答案:C解析:C【分析】根据不等式的基本性质解答即可.不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A.∵m>n,∴-2m<-2n,故本选项不合题意;B.∵m>n,∴,故本选项不合题意;C.∵m>n,∴m+2>n+2,故本选项符合题意;D.∵m>n,∴-m<-n,∴3-m<3-n,故本选项不合题意;故选:C.【点睛】本题主要考查了不等式的基本性质,解题时注意,不等式的两边同时乘或除以一个负数,不等号的方向改变.5.已知关于x的不等式组有5个整数解,则a的取值范围是()A.6<a≤7 B.7<a≤8 C.7≤a<8 D.7≤a≤8答案:B解析:B【分析】先求出不等式组中每个不等式的解集,然后求出其公共解,最后确定整数解,进而求出参数的值.【详解】解:解不等式①得:x>2;解不等式②得:x<a;因为不等式组有解;所以不等式组的解集为2<x<a,因为不等式有五个整数解,所以这五个整数解为x=3,4,5,6,7,所以7<a≤8,故答案为:B.【点睛】本题考查含参不等式组的解法以及整数解的确定,在确定参数范围时可利用数轴通过数形结合思想确定,特别注意边界值的取等情况.6.下列命题是真命题的是()A.如果,则B.如果|a|=|b|,那么a=bC.两个锐角的和是钝角D.如果一点到线段两端的距离相等,那么这点是这条线段的中点答案:A解析:A【解析】分析:根据不等式的性质对A进行判断;根据绝对值的意义对B进行判断;根据锐角在大小对C进行判断;根据中点的定义对D进行判断.【解答】解:A、因为,所以,所以A选项正确;B、|a|=|b|,则a=b或a=-b,所以B选项错误;B、三角形的一个外角大于与之不相邻的任何一个内角,所以B选项错误;C、两个锐角的和有可能是锐角,有可能是直角,也有可能是钝角,所以C选项错误;D、线段上一点到该线段两端的距离相等,那么这点是这条线段的中点,所以D选项错误.故选:A.点睛:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.7.正方形在数轴上的位置如图所示,点对应的数分别为和0.若正方形绕着点C顺时针方向在数轴上翻转,翻转1次后,点D所对应的数为1;绕点D翻转第2次;继续翻转,则翻转2020次后,数轴上数2020所对应的点是()A.点A B.点B C.点C D.点D答案:C解析:C【分析】根据题意可知每4次翻转为一个循环组依次循环,用2020除以4,根据正好能整除可得解.【详解】解:由题意可得:点C对应0,点D对应1,点A对应2,点B对应3,点C对应4,...,∵每4次翻转为一个循环组依次循环,∴2020÷4=505,∴翻转2020次后,数轴上数2020所对应的点是点C.故选:C.【点睛】本题考查了数轴,根据翻转的变化规律确定出每4次翻转为一个循环组依次循环是解题的关键.8.矩形内放入两张边长分别为和的正方纸片,按照图①放置,矩形纸片没有两个正方形覆盖的部分(黑色阴影部分)的面积为;按照图②放置,矩形纸片没有被两个正方形覆盖的部分面积为;按图③放置,矩形纸片没有被两个正方形覆盖的部分的面积为.已知,,设,则下列值是常数的是()A. B. C. D.答案:B解析:B【分析】利用面积的和差表示出S2-S1,根据图①与图②分别表示出矩形的面积,进而得到b(AD-AB)=12,从而求解.【详解】解:由,可得:S2-S1=9,由图①得:S矩形ABCD=S1+a2+b(AD-a),由图②得:S矩形ABCD=S2+a2+b(AB-a),∴S1+a2+b(AD-a)=S2+a2+b(AB-a),∴S2-S1=b(AD-AB),∵AD-AB=m,∴mb=12.故选:B.【点睛】本题考查了整式的混合运算,“整体”思想在整式运算中较为常见,适时采用整体思想可使问题简单化,并且迅速地解决相关问题,此时应注意被看做整体的代数式通常要用括号括起来.二、填空题9.计算:(﹣3ab2)3•(a2b)=______.解析:【分析】先算乘方,再利用单项式乘单项式法则计算即可得到结果.【详解】解:.故答案为:.【点睛】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.10.能使命题“若,则”为假命题的b所有可能值组成的范围为____.解析:【分析】根据不等式的性质和命题的真假判断即可;【详解】当b=0时,得,此命题是假命题;当时,得,此命题是接命题;故b的取值范围为.【点睛】本题主要考查了命题与定理的考查,结合不等式的性质判断是关键.11.一个多边形的内角和与外角和之差为720,则这个多边形的边数为______.解析:8【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列式求解即可.【详解】设这个多边形的边数是n,则(n-2)•180°-360°=720°,解得n=8.故答案为8.【点睛】本题考查了多边形的内角和与外角和定理,任意多边形的外角和都是360°,与边数无关.12.已知,,则__________,________.解析:【分析】原式利用平方差公式分解,把已知等式代入计算即可求出值,再利用负指数幂的法则计算.【详解】解:∵a+b=6,a-b=2,∴原式=(a+b)(a-b)=12,,故答案为:12,.【点睛】此题考查了因式分解-运用公式法,负指数幂,熟练掌握平方差公式是解本题的关键.13.已知是方程组的解,则=____________解析:【分析】把代入到方程组中得到关于的方程组,求出的值,再求出的值即可.【详解】解:∵是方程组的解,∴,解得:,∴,故答案为:.【点睛】本难主要考查了二元一次方程组的解,解二元一次方程组和求代数式的值,明白解的定义和正确求出的值是解决此题的关键.14.如图,要把池中的水引到处,且使所开渠道最短,可过点作于,然后沿所作的线段开渠,所开渠道即最短,试说明设计的依据是:____________________.答案:C解析:直线外一点与直线上各点连接的所有线段中,垂线段最短.【分析】直接利用点到直线的距离最短,能表示点到直线距离的线段是垂线段,即可得出结论【详解】解:∵,∴CD是垂线段,CD最短,依据为:直线外一点与直线上各点连接的所有线段中,垂线段最短.故答案为:直线外一点与直线上各点连接的所有线段中,垂线段最短.【点睛】本题考查垂线段最短,掌握垂线段最短是解题关键15.已知三角形的两边分别为和,则第三边的取值范围是_______.答案:【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵72=5,2+7=9,∴第三边c的取值范围为5<c<9.故答案为:5<c<9.【点解析:【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵72=5,2+7=9,∴第三边c的取值范围为5<c<9.故答案为:5<c<9.【点睛】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.16.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.答案:【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.【详解】已知可知直尺的两边平行故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三解析:【分析】由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.【详解】已知可知直尺的两边平行故答案为:114°【点睛】本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.17.计算或化简:(1)(2)答案:(1)-5;(2)【分析】(1)根据零次幂的性质、负整数指数幂的性质、乘方的意义计算,再计算加减即可;(2)根据幂的乘方运算法则计算,再计算同底数幂的乘、除法,最后合并.【详解】解:(1)解析:(1)-5;(2)【分析】(1)根据零次幂的性质、负整数指数幂的性质、乘方的意义计算,再计算加减即可;(2)根据幂的乘方运算法则计算,再计算同底数幂的乘、除法,最后合并.【详解】解:(1)==-5;(2)==【点睛】此题主要考查了整式的混合运算,有理数的混合运算,关键是掌握各运算法则.18.因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.答案:(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因解析:(1)2b(a-2b)2;(2)(m﹣n)(a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(m﹣n),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b)2;(2)原式=a2(m﹣n)-9(m﹣n)=(m﹣n)(a2-9)=(m﹣n)(a+3)(a-3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=[(m2+5)-6]2=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.19.解方程组:(1);(2).答案:(1);(2).【分析】(1)由代入消元法解方程组,即可得到答案;(2)由加减消元法解方程组,即可得到答案.【详解】解:(1)把①代入②,得,解得:,把代入①,得;∴方程组的解为;解析:(1);(2).【分析】(1)由代入消元法解方程组,即可得到答案;(2)由加减消元法解方程组,即可得到答案.【详解】解:(1)把①代入②,得,解得:,把代入①,得;∴方程组的解为;(2),整理得:由①②,得,∴,把代入①,得,∴方程组的解为.【点睛】本题考查了解二元一次方程组,解题的关键是掌握加减消元法、代入消元法解方程组.20.解不等式组:,并把解集在数轴上表示出来.答案:,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:,解不等式①,得:,解不等式②,得:,则不等解析:,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:,解不等式①,得:,解不等式②,得:,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的大小.解:∵EF∥AD,∴∠2=(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥()∴∠BAC+=180°()∵∠BAC=70°,∴∠AGD=110°.答案:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补【分析】根据平行线性质推出∠1=∠3,根据平行线判定推出AB∥DG,根据平行线判定推出∠BAC+∠AGD=180°,把∠BA解析:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补【分析】根据平行线性质推出∠1=∠3,根据平行线判定推出AB∥DG,根据平行线判定推出∠BAC+∠AGD=180°,把∠BAC=70°代入计算求出即可.【详解】∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°.故答案为:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.甲、乙两个商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过元后,超出元的部分按收费;在乙商场累计购物超过元后,超出元的部分按收费,如果顾客累计购物超过元.(1)写出该顾客到甲、乙两商场购物的实际费用;(2)到哪家商场购物花费少?请你用方程和不等式的知识说明理由.答案:(1)甲:;乙:;(2)当购物累计超过元时,到甲商场购物花费少;当购物累计超过元而不到元时,到甲商场购物花费少;当购物累计等于元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物元.然后根据解析:(1)甲:;乙:;(2)当购物累计超过元时,到甲商场购物花费少;当购物累计超过元而不到元时,到甲商场购物花费少;当购物累计等于元时,到甲、乙两商场购物花费一样【分析】(1)设累计购物元.然后根据题意分别求出甲、乙的费用与x的关系式即可;(2)根据(1)列出的关系式,进行求解即可得到答案.【详解】解:设累计购物元.(1)甲:.乙:.(2)若到甲商场购物花费少,则解得.所以当购物累计超过元时,到甲商场购物花费少.若到乙商场购物花费少,则.解得.所以当购物累计超过元而不到元时,到甲商场购物花费少.若到甲、乙两商场花费一样,则.解得.所以当购物累计等于元时,到甲、乙两商场购物花费一样.【点睛】本题主要考查了一元一次不等式的实际应用,一元一次方程的实际应用,解题的关键在于能够准确根据题意列出关系式求解.23.为了净化空气,美化校园环境,某学校计划种植,两种树木.已知购买棵种树木和棵种树木共花费元;购买棵种树木和棵种树木共花费元.(1)求,两种树木的单价分别为多少元(2)如果购买种树木有优惠,优惠方案是:购买种树木超过棵时,超出部分可以享受八折优惠.若该学校购买(,且为整数)棵种树木花费元,求与之间的函数关系式.(3)在(2)的条件下,该学校决定在,两种树木中购买其中一种,且数量超过棵,请你帮助该学校判断选择购买哪种树本更省钱.答案:(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,解析:(1)种树木的单价为80元,种树木的单价为72元;(2);(3)当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【分析】(1)设种树每棵元,种树每棵元,根据“购买20棵种树木和15棵种树木共花费2680元;购买10棵种树木和20棵种树木共花费2240元”列出方程组并解答;(2)分,两种情况根据(1)求出的单价即可得与之间的函数关系式;(3)根据种树的单价和(2)求得的函数关系式进行解答即可.【详解】解:(1)设种树木的单价为元,种树木的单价为元.根据题意,得,解得:,答:种树木的单价为80元,种树木的单价为72元;(2)根据题意得,当时,;当时,,与之间的函数关系式为;(3)当时,解得:,即当时,选择购买种树木更省钱;当时,解得:,即当时,选择购买两种树木的费用相同;当时,解得:,即当时,选择购买种树木更省钱.答:当时,选择购买种树木更省钱;当时,选择购买两种树木的费用相同;当时,选择购买种树木更省钱.【点睛】本题考查了一次函数的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.24.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.答案:(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E=(∠D+∠B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于,①,②,①-②得:AD平分∠BAC,【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.25.当光线经过镜面反射时,入射光线、反射光线与镜面所夹的角对应相等,例如:在图①、图②中,都有∠1=∠2,∠3=∠4.设镜子AB与BC的夹角∠ABC=α.(1)如图①,若入射光线EF与反射光线GH平行,则α=________°.(2)如图②,若90°<α<180°,入射光线EF与反射光线GH的夹角∠FMH=β.探索α与β的数量关系,并说明理由.(3)如图③,若α=120°,设镜子CD与BC的夹角∠BCD=γ(90°<γ<180°),入射光线EF与镜面AB的夹角∠1=m(0°<m<90°),已知入射光线EF从镜面AB开始反射,经过n(n为正整数,且n≤3)次反射,当第n次反射光线与入射光线EF平行时,请直接写出γ的度数.(可用含有m的代数式表示)答案:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°,∠3+∠4+∠解析:(1)90°;(2)β=2α-180°,理由见解析;(3)90°+m或150°【分析】(1)根据EF∥GH,得到∠FEG+∠EGH=180°,再根据∠1+∠2+∠FEG=180°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务印章管理内控制度
- 防止舞弊行为内控制度
- 教师职业行为负面清单、师德责任追究制度
- 学校关于开展领导干部亲属违规经商办企业和领导干部收送红包礼金问题专项治理工作方案五篇例文
- 2026年环保行业创新报告及污水处理技术趋势分析报告
- 2025年互联网保险理赔线上化解决方案报告
- 房地产项目管理规范与流程
- 2025年安防行业智能监控技术与AIoT发展报告
- 2025年光伏组件封装技术升级与耐候性技术提升报告
- 2025年钛合金加工十年分析:骨科植入物市场趋势报告
- 2025年河南体育学院马克思主义基本原理概论期末考试笔试题库
- 买房分手协议书范本
- 门窗安装专项施工方案
- 招聘及面试技巧培训
- 贵州兴义电力发展有限公司2026年校园招聘考试题库附答案
- 2025年水果连锁门店代理合同协议
- 耐克加盟协议书
- 朱棣课件教学课件
- 农业推广计划课件
- 苏教版四年级数学上册期末考试卷(附答案)
- 第七章重介质选矿课件
评论
0/150
提交评论