版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省普通高中2026届高一数学第一学期期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.计算2sin2105°-1的结果等于()A. B.C. D.2.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.3.计算:()A.0 B.1C.2 D.34.如果,,那么()A. B.C. D.5.为了得到函数的图像,可以将函数的图像A.向右平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向左平移个单位长度6.正方体ABCD-A1B1C1D1中,异面直线所成的角等于()A.30° B.45°C.60° D.90°7.已知函数在上单调递减,且关于的方程恰好有两个不相等的实数解,则的取值范围是()A. B.C. D.8.已知等比数列满足,,则()A. B.C. D.9.直线的倾斜角是A. B.C. D.10.不论为何实数,直线恒过定点()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(时)之间近似满足如图所示的图象.据进一步测定,每毫升血液中含药量不少于0.25微克时,治疗疾病有效,则服药一次治疗疾病有效的时间为___________小时.12.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.13.已知定义域为R的偶函数满足,当时,,则方程在区间上所有的解的和为___________.14.随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示.从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,则在[50,60)年龄段抽取的人数为______.15.已知在同一平面内,为锐角,则实数组成的集合为_________16.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知点P是平行四边形ABCD所在平面外的一点,E,F分别是PA,BD上的点且PE∶EA=BF∶FD,求证:EF∥平面PBC.18.已知,.(1)求的值;(2)求的值.19.已知函数图象的一条对称轴方程为,且其图象上相邻两个零点的距离为.(1)求的解析式;(2)若对,不等式恒成立,求实数m的取值范围.20.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.21.如图,三棱柱中,侧棱垂直底面,,,点是棱的中点(1)证明:平面平面;(2)求三棱锥的体积
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】.选D2、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.3、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B4、D【解析】根据不等式的性质,对四个选项进行判断,从而得到答案.【详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【点睛】本题考查不等式的性质,属于简单题.5、B【解析】因为,所以为了得到函数的图像,可以将函数的图像向右平移个单位长度即可.选B6、C【解析】在正方体中,连接,则,则异面直线和所成的角就是相交直线和所成的角,即,在等边三角形中,,故选C7、C【解析】由在,上单调递减,得,由在上单调递减,得,作出函数且在上的大致图象,利用数形结合思想能求出的取值范围【详解】解:由在上单调递减,得,又由且在上单调递减,得,解得,所以,作出函数且在上的大致图象,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当,即时,联立,即,则,解得:,当时,即,由图象可知,符合条件综上:故选:C8、C【解析】由题意可得,所以,故,选C.考点:本题主要考查等比数列性质及基本运算.9、B【解析】,斜率为,故倾斜角为.10、C【解析】将直线方程变形为,即可求得过定点坐标.【详解】根据题意,将直线方程变形为因为位任意实数,则,解得所以直线过的定点坐标为故选:C【点睛】本题考查了直线过定点的求法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据图象先求出函数的解析式,然后由已知构造不等式0.25,解不等式可得每毫升血液中含药量不少于0.25微克的起始时刻和结束时刻,他们之间的差值即为服药一次治疗疾病有效的时间【详解】解:当时,函数图象是一个线段,由于过原点与点,故其解析式为,当时,函数的解析式为,因为在曲线上,所以,解得,所以函数的解析式为,综上,,由题意有,解得,所以,所以服药一次治疗疾病有效的时间为个小时,故答案为:.12、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:13、【解析】根据给定条件,分析函数,函数的性质,再在同一坐标系内作出两个函数图象,结合图象计算作答.【详解】当时,,则函数在上单调递减,函数值从减到0,而是R上的偶函数,则函数在上单调递增,函数值从0增到,因,有,则函数的周期是2,且有,即图象关于直线对称,令,则函数在上递增,在上递减,值域为,且图象关于直线对称,在同一坐标系内作出函数和的图象,如图,观察图象得,函数和在上的图象有8个交点,且两两关于直线对称,所以方程在区间上所有解的和为.故答案为:【点睛】方法点睛:函数零点个数判断方法:(1)直接法:直接求出f(x)=0的解;(2)图象法:作出函数f(x)的图象,观察与x轴公共点个数或者将函数变形为易于作图的两个函数,作出这两个函数的图象,观察它们的公共点个数.14、3【解析】根据频率分布直方图,求得不小于40岁的人的频率及人数,再利用分层抽样的方法,即可求解,得到答案【详解】根据频率分布直方图,得样本中不小于40岁的人的频率是0.015×10+0.005×10=0.2,所以不小于40岁的人的频数是100×0.2=20;从不小于40岁的人中按年龄段分层抽样的方法随机抽取12人,在[50,60)年龄段抽取人数为【点睛】本题主要考查了频率分布直方图的应用,其中解答中熟记频率分布直方图的性质,以及频率分布直方图中概率的计算方法是解答的关键,着重考查了推理与运算能力,属于基础题15、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.16、【解析】通过画出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围.【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】连接AF并延长交BC于M.连接PM,因为AD∥BC,∴,又,∴,所以EF∥PM,从而得证.试题解析:连接AF并延长交BC于M.连接PM.因AD∥BC,所以=.又由已知=,所以=.由平面几何知识可得EF∥PM,又EF⊄平面PBC,PM⊂平面PBC,所以EF∥平面PBC.18、(1);(2).【解析】(1)由已知利用同角三角函数基本关系式可求,进而利用二倍角的正弦函数公式即可计算得解;(2)由(1)及两角和的余弦函数公式,诱导公式即可计算得解.试题解析:(1)由题意得:,∴.(2)∵,,∴.19、(1)(2)【解析】(1)由题意可得周期为,则可求出的值,再由一条对称轴方程为,可得,可求出的值,从而可求得解析式,(2)由题意得对恒成立,所以利用三角函数的性质求出即可,从而可求出实数m的取值范围【小问1详解】因为图象上相邻两个零点的距离为,所以周期为,所以,得,所以,因为图象的一条对称轴方程为,所以,即,所以,因为,所以,所以【小问2详解】由(1)得对恒成立,因为,所以,所以,则,所以,解得,所以实数m的取值范围为20、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时,,,得.(2)在定义域内单调递减,当时,函数在上单调递减,,得.当时,函数在上单调递增,,不成立.综上:.【点睛】本题主要考查了指数函数的图象与性质的应用问题,其中解答中由指数函数的解析式转化为相应的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级物理《声音的形成》测试题集
- 叉车操作安全模拟考试试题库
- 初中生物实验安全及操作规范
- 上下文词嵌入Contextualized Embedding
- 特殊儿童心理学网络课程复习资料
- 高校线上教学平台建设与使用指南
- 渠道工程安全培训制度课件
- 绩效考核与激励机制创新实践
- 婚庆行业市场营销方案策划
- 安全文明培训流程展示课件
- SH/T 3115-2024 石油化工管式炉轻质浇注料衬里工程技术规范(正式版)
- FZ∕T 61002-2019 化纤仿毛毛毯
- 《公输》课文文言知识点归纳
- 23秋国家开放大学《机电一体化系统设计基础》形考作业1-3+专题报告参考答案
- 开封银行健康知识讲座
- 垃圾房改造方案
- 2023年工装夹具设计工程师年终总结及下一年计划
- 闭合导线平差计算表-电子表格自动计算
- 第七章腭裂课件
- 《大卫·科波菲尔》
- 电子档案需求规格说明书内容完整
评论
0/150
提交评论