版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省赣州市宁都县三中2026届高二上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.气象台正南方向的一台风中心,正向北偏东30°方向移动,移动速度为,距台风中心以内的地区都将受到影响,若台风中心的这种移动趋势不变,气象台所在地受到台风影响持续时间大约是()A. B.C. D.2.直三棱柱ABC-A1B1C1中,△ABC为等边三角形,AA1=AB,M是A1C1的中点,则AM与平面所成角的正弦值为()A. B.C. D.3.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.4.直线的一个法向量为()A. B.C. D.5.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.6.正方体的棱长为2,E,F,G分别为,AB,的中点,则直线ED与FG所成角的余弦值为()A. B.C. D.7.已知l,m是两条不同的直线,是两个不同的平面,且,则()A.若,则 B.若,则C.若,则 D.若,则8.已知,满足,则的最小值为()A.5 B.-3C.-5 D.-99.已知双曲线的离心率为,左焦点为F,实轴右端点为A,虚轴上端点为B,则为()A.直角三角形 B.钝角三角形C.等腰三角形 D.锐角三角形10.直线且的倾斜角为()A. B.C. D.11.两圆和的位置关系是()A.内切 B.外离C.外切 D.相交12.1202年,意大利数学家斐波那契出版了他的《算盘全书》.他在书中收录了一些有意思的问题,其中有一个关于兔子繁殖的问题:如果1对兔子每月生1对小兔子(一雌一雄),而每1对小兔子出生后的第3个月里,又能生1对小兔子,假定在不发生死亡的情况下,如果用Fn表示第n个月的兔子的总对数,则有(n>2),.设数列{an}满足:an=,则数列{an}的前36项和为()A.11 B.12C.13 D.18二、填空题:本题共4小题,每小题5分,共20分。13.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)14.在平面直角坐标系中,已知双曲线的左,右焦点分别为,,过且与圆相切的直线与双曲线的一条渐近线相交于点(点在第一象限),若,则双曲线的离心率___________.15.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.16.抛物线的准线方程为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2020年10月,中共中央办公厅、国务院办公厅印发了《关于全面加强和改进新时代学校体育工作的意见》,某地积极开展中小学健康促进行动,发挥以体育智、以体育心功能,决定在2021年体育中考中再增加一定的分数,规定:考生须参加立定跳远、掷实心球、一分钟跳绳三项测试,其中一分钟跳绳满分20分,某校为掌握九年级学生一分钟跳绳情况,随机抽取了100名学生测试,其一分一分钟跳绳个数成绩(分)1617181920频率(1)若每分钟跳绳成绩不足18分,则认为该学生跳绳成绩不及格,求在进行测试的100名学生中跳绳成绩不及格的人数为多少?(2)该学校决定由这次跳绳测试一分钟跳绳个数在205以上(包括205)的学生组成“小小教练员"团队,小明和小华是该团队的成员,现学校要从该团队中选派2名同学参加某跳绳比赛,求小明和小华至少有一人被选派的概率18.(12分)已知,以点为圆心圆被轴截得的弦长为.(1)求圆的方程;(2)若过点的直线与圆相切,求直线的方程.19.(12分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.20.(12分)求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点;(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.21.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值22.(10分)如图,矩形的两个顶点位于x轴上,另两个顶点位于抛物线在x轴上方的曲线上,求矩形面积最大时的边长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用余弦定理进行求解即可.【详解】如图所示:设台风中心为,,小时后到达点处,即,当时,气象台所在地受到台风影响,由余弦定理可知:,于是有:,解得:,所以气象台所在地受到台风影响持续时间大约是,故选:D2、B【解析】取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,即可根据线面角的向量公式求出【详解】如图所示,取的中点,以为原点,所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,不妨设,则,所以,平面的一个法向量为设AM与平面所成角为,向量与所成的角为,所以,即AM与平面所成角的正弦值为故选:B3、B【解析】根据空间向量基本定理求解【详解】由已知故选:B4、B【解析】直线化为,求出直线的方向向量,因为法向量与方向向量垂直,逐项验证可得答案.【详解】直线的方向向量为,化为,直线的方向向量为,因为法向量与方向向量垂直,设法向量为,所以,由于,A错误;,故B正确;,故C错误;,故D错误;故选:B.5、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C6、B【解析】建立空间直角坐标系,利用空间向量坐标运算即可求解.【详解】如图所示建立适当空间直角坐标系,故选:B7、B【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系分析选项A,C,D,由平面与平面垂直的判定定理判定选项D.【详解】选项A.由,,直线l,m可能相交、平行,异面,故不正确.选项B.由,,则,故正确.选项C.由,,直线l,m可能相交、平行,异面,故不正确.选项D.由,,则可能相交,可能平行,故不正确.故选:B8、D【解析】作出可行域,作出目标函数对应的直线,平移该直线可得最优解【详解】解:作出可行域,如图内部(含边界),作直线,在中,,当直线向下平移时,增大,因此把直线向上平移,当直线过点时,故选:D9、A【解析】根据三边的关系即可求出【详解】因,所以,而,,,所以,即,所以为直角三角形故选:A10、C【解析】由直线方程可知其斜率,根据斜率和倾斜角关系可得结果.【详解】直线方程可化为:,直线的斜率,直线的倾斜角为.故选:C.11、A【解析】计算出圆心距,利用几何法可判断两圆的位置关系.【详解】圆的圆心坐标为,半径为,圆的圆心坐标为,半径为,两圆圆心距为,则,因此,两圆和内切.故选:A.12、B【解析】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,再根据an=,即可求出数列{an}的前36项和【详解】由奇数+奇数=偶数,奇数+偶数=奇数可知,数列{Fn}中F3,F6,F9,F12,,F3n为偶数,其余项都为奇数,∴前36项共有12项为偶数,∴数列{an}的前36项和为12×1+24×0=12.故选:B二、填空题:本题共4小题,每小题5分,共20分。13、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.14、2【解析】设切点,根据,可得,在中,利用余弦定理构造齐次式,从而可得出答案.【详解】解:设切点,由,∴,∵为中点,则为中位线,∴,,中,,,,∴.故答案为:2.15、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:16、【解析】由抛物线的标准方程为x2=y,得抛物线是焦点在y轴正半轴的抛物线,2p=1,∴其准线方程是y=,故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)14人;(2).【解析】(1)根据频率直方表区间成绩及其对应的频率,即可求每分钟跳绳成绩不足18分的人数.(2)由表格数据求出一分钟跳绳个数在205以上(包括205)的学生共6人,列举出六人中选两人参加比赛的所有情况、小明和小华至少有一个被选派的情况,由古典概型的概率求法即可得小明和小华至少有一人被选派的概率.【详解】(1)由表可知,每分钟跳绳成绩不足18分,即为成绩是16分或17分,在进行测试的100名学生中跳绳成绩不及格人数为:人)(2)一分钟跳绳个数在205以上(包括205)的学生频率为,其人数为:(人),记小明为,小华为,其余四人为,则在这六人中选两人参加比赛的所有情况为:,共15种,其中小明和小华至少有一个被选派的情况有:,共9种,小明和小华至少有一人被选派的概率为:.18、(1)(2)或【解析】(1)根据垂径定理,可直接计算出圆的半径;(2)根据直线的斜率是否存在分类讨论,斜率不存在时,可得到直线方程为的直线满足题意,斜率存在时,利用直线与圆相切,即到直线的距离等于半径,然后解出关于斜率的方程即可.【小问1详解】不妨设圆的半径为,根据垂径定理,可得:解得:则圆的方程为:【小问2详解】当直线的斜率不存在时,则有:故此时直线与圆相切,满足题意当直线的斜率存在时,不妨设直线的斜率为,点的直线的距离为直线的方程为:则有:解得:,此时直线的方程为:综上可得,直线的方程为:或19、(1)(2)【解析】由已知式子变形可得是以为首项,为公比的等比数列,由等比数列的通项公式易得利用错位相减法,得到数列的前项和为解析:(1)由,()知,又,∴是以为首项,为公比的等比数列,∴,∴(2),,两式相减得,∴点睛:本题主要考查数列的证明,错位相减法等基础知识,考查学生的分析问题解决问题的能力,转化能力和计算能力.第一问中将已知的递推公式进行变形,转化为的形式来证明,还可以根据等比数列的定义来证明;第二问,将第一问中得到的结论代入,先得到的表达式,利用错位相减法,即可得到数列的前项和为20、(1)或(2)【解析】(1)待定系数法去求椭圆的标准方程即可;(2)待定系数法去求椭圆的标准方程即可.【小问1详解】当椭圆焦点在x轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为当椭圆焦点在y轴上时,方程可设为,将点代入得,解之得,则所求椭圆方程为【小问2详解】椭圆方程可设为,则,解之得,则椭圆方程为21、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 金山安全员培训课件
- 2025 小学六年级数学上册百分数土壤酸碱度统计课件
- (正式版)DB12∕T 808-2018 《公共机构能源审计规程 》
- 儿科护理查房:小儿灌肠护理
- 高中化学-第1章-化学反应与能量转化-1.3-化学能转化为电能-原电池课件-鲁科版选修
- 医学血压的评估和医疗护理说课讲解专题课件
- 发热病人降温护理
- 郑州格力公司安全培训课件
- 安徽省合肥市包河区2024-2025学年高二下学期期中化学试卷及答案
- 2026年口碑服务公司员工假期(含带薪年假、病假)管理制度
- 2025至2030中国细胞存储行业调研及市场前景预测评估报告
- 《中华人民共和国危险化学品安全法》解读
- 水暖施工员考试及答案
- 2025年省级行业企业职业技能竞赛(老人能力评估师)历年参考题库含答案
- 培养员工的协议书
- 1.1《子路、曾皙、冉有、公西华侍坐》教学课件2025-2026学年统编版高中语文必修下册
- 2025天津中煤进出口有限公司面向中国中煤内部及社会招聘第五批电力人才52人(公共基础知识)测试题附答案解析
- 2025至2030氢过氧化叔丁基(TBHP)行业运营态势与投资前景调查研究报告
- 2026年哈尔滨职业技术学院单招职业适应性考试必刷测试卷附答案
- 通信行业项目经理服务水平绩效考核表
- 副高医院药学考试试题题库及答案
评论
0/150
提交评论