雨课堂学堂在线学堂云《Artificial Neural Networks Theory and Its Applications(长安)》单元测试考核答案_第1页
雨课堂学堂在线学堂云《Artificial Neural Networks Theory and Its Applications(长安)》单元测试考核答案_第2页
雨课堂学堂在线学堂云《Artificial Neural Networks Theory and Its Applications(长安)》单元测试考核答案_第3页
雨课堂学堂在线学堂云《Artificial Neural Networks Theory and Its Applications(长安)》单元测试考核答案_第4页
雨课堂学堂在线学堂云《Artificial Neural Networks Theory and Its Applications(长安)》单元测试考核答案_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1题Biologicalneuronscanbedividedintosensoryneurons,motorneuronsand()accordingtotheirfunctions.APseudounipolarneuralnetworksBbipolarneuronsCmultipolarneuronsDinterneurons第2题Neuronsandglialcellsarethetwomajorpartsofthenervoussystem.第3题Neuronsarehighlypolarizedcells,whicharemainlycomposedoftwoparts:thecellbodyandthesynapse.第4题Thehumanbrainisanimportantpartofthenervoussystem,whichcontainsmorethan86billionneurons.Itisthecentralinformationprocessingorganizationofhumanbeings.第5题Synapseistheplacewhereneuronsconnectinfunction.Itiscomposedofpresynapticmembrane,synapticspaceandpostsynapticmembrane.第1题In1989,Mead,thefatherofVLSI,publishedhismonograph"()",inwhichageneticneuralnetworkmodelbasedonevolutionarysystemtheorywasproposed.APerceptrons:AnIntroductiontoComputationalGeometryBLearningMachinesCAnalogVLSIandNeuralSystemsDJournalNeuralNetworks第2题In1989,YannLecunproposedconvolutionalneuralnetworkandappliedittoimageprocessing,whichshouldbetheearliestapplicationfieldofdeeplearningalgorithm.第3题In1954,Eccles,aneurophysiologistattheUniversityofMelbourne,summarizedtheprincipleofDale,aBritishphysiologist,that"eachneuronsecretesonlyonekindoftransmitter".第4题In1972,ProfessorKohonenofFinlandproposedaself-organizingfeaturemap(SOFM)neuralnetworkmodel.第5题Predictionandevaluationisanactivityofscientificcalculationandevaluationofsomecharacteristicsanddevelopmentstatusofthingsoreventsinthefutureaccordingtotheknowninformationofobjectiveobjects.TestforChapter3第1题Thefunctionoftransferfunctioninneuronsistogetanewmappingoutputofsummeraccordingtothespecifiedfunctionrelationship,andthencompletesthetrainingofartificialneuralnetwork.第2题Thedeterminantchangessignwhentworows(ortwocolumns)areexchanged.Thevalueofdeterminantiszerowhentworows(ortwocolumns)aresame.第3题Therearetwokindsofphenomenaintheobjectiveworld.Thefirstisthephenomenonthatwillhappenundercertainconditions,whichiscalledinevitablephenomenon.Thesecondkindisthephenomenonthatmayormaynothappenundercertainconditions,whichiscalledrandomphenomenon.第4题LogarithmicS-typetransferfunction,namelySigmoidfunction,isalsocalledS-shapedgrowthcurveinbiology.第5题Rectifiedlinearunit(ReLU),similartotheslopefunctioninmathematics,isthemostcommonlyusedtransferfunctionofartificialneuralnetwork.TestforChapter4第1题Theperceptronlearningalgorithmisdrivenby(

),sothestochasticgradientdescentmethodisusedtooptimizethelossfunction.

AmaximumBminimumCmisclassificationDcorrect第2题Perceptronisasingle-layerneuralnetwork,orneuron,whichisthesmallestunitofneuralnetwork.第3题Whentheperceptronislearning,eachsamplewillbeinputintotheneuronasastimulus.Theinputsignalisthefeatureofeachsample,andtheexpectedoutputisthecategoryofthesample.Whentheoutputisdifferentfromthecategory,wecanadjustthesynapticweightandbiasvalueuntiltheoutputofeachsampleisthesameasthecategory.第4题Ifthesymmetrichardlimitfunctionisselectedforthetransferfunction,theoutputcanbeexpressedasy=+1n≥0ory=-1n<0,Iftheinnerproductoftherowvectorandtheinputvectorintheweightmatrixisgreaterthanorequalto-b,theoutputis1,otherwisetheoutputis-1.第5题Thebasicideaofperceptronlearningalgorithmistoinputsamplesintothenetworkstepbystep,andadjusttheweightmatrixofthenetworkaccordingtothedifferencebetweentheoutputresultandtheidealoutput,thatistosolvetheoptimizationproblemoflossfunctionL(w,b).

TestforChapter5第1题TheoutputofBPneuralnetworkis()ofneuralnetwork.Atheoutputofthelastlayer

BtheinputofthelastlayerCtheoutputofthesecondlayerDtheinputofthesecondlayer第2题BPneuralnetworkhasbecomeoneofthemostrepresentativealgorithmsinthefieldofartificialintelligence.Ithasbeenwidelyusedinsignalprocessing,patternrecognition,machinecontrol(expertsystem,datacompression)andotherfields.第3题In1974,PaulWerbosofthenaturalsciencefoundationoftheUnitedStatesfirstproposedtheuseoferrorbackpropagationalgorithmtotrainartificialneuralnetworksinhisdoctoraldissertationofHarvardUniversity,anddeeplyanalyzedthepossibilityofapplyingittoneuralnetworks,effectivelysolvingtheXORloopproblemthatsinglesensorcannothandle.第4题InthestandardBPneuralnetworkalgorithmandmomentumBPalgorithm,thelearningrateisaconstantthatremainsconstantthroughoutthetrainingprocess,andtheperformanceofthelearningalgorithmisverysensitivetotheselectionofthelearningrate.第5题L-Malgorithmismainlyproposedforsuperlargescaleneuralnetwork,anditisveryeffectiveinpracticalapplication.TestforChapter6第1题RBFneuralnetworkisanovelandeffectivefeedforwardneuralnetwork,whichhasthebestlocalapproximationandglobaloptimalperformance.第2题Atpresent,RBFneuralnetworkhasbeensuccessfullyappliedinnonlinearfunctionapproximation,timeseriesanalysis,dataclassification,patternrecognition,informationprocessing,imageprocessing,systemmodeling,controlandfaultdiagnosis.第3题ThebasicideaofRBFneuralnetworkistouseradialbasisfunctionasthe"basis"ofhiddenlayerhiddenunittoformhiddenlayerspace,andhiddenlayertransformsinputvector.Theinputdatatransformationoflowdimensionalspaceismappedintohigh-dimensionalspace,sothattheproblemoflinearseparabilityinlow-dimensionalspacecanberealizedinhigh-dimensionalspace.第4题ForthelearningalgorithmofRBFneuralnetwork,thekeyproblemistodeterminethecenterparametersoftheoutputlayernodereasonably.第5题ThemethodofselectingthecenterofRBFneuralnetworkbyself-organizinglearningistoselectthecenterofRBFneuralnetworkbyk-meansclusteringmethod,whichbelongstosupervisedlearningmethod.TestforChapter7第1题Intermsofalgorithm,ADALINEneuralnetworkadoptsW-Hlearningrule,alsoknownastheleastmeansquare(LMS)algorithm.Itisdevelopedfromtheperceptronalgorithm,anditsconvergencespeedandaccuracyhavebeengreatlyimproved.第2题ADALINEneuralnetworkhassimplestructureandmulti-layerstructure.Itisflexibleinpracticalapplicationandwidelyusedinsignalprocessing,systemidentification,patternrecognitionandintelligentcontrol.第3题WhentherearemultipleADALINEinthenetwork,theadaptivelinearneuralnetworkisalsocalledMadalinewhichmeansmanyAdalineneuralnetworks.第4题Thealgorithmusedinsingle-layerADALINEnetworkisLMSalgorithm,whichissimilartothealgorithmofperceptron,andalsobelongstosupervisedlearningalgorithm.第5题Inpracticalapplication,theinverseofthecorrelationmatrixandthecorrelationcoefficientarenoteasytoobtain,sotheapproximatesteepestdescentmethodisneededinthealgorithmdesign.Thecoreideaisthattheactualmeansquareerrorofthenetworkisreplacedbythemeansquareerrorofthek-thiteration.TestforChapter8第1题Hopfieldneuralnetworkisakindofneuralnetworkwhichcombinesstoragesystemandbinarysystem.Itnotonlyprovidesamodeltosimulatehumanmemory,butalsoguaranteestheconvergenceto().AmaximumBminimumClocalminimumDlocalmaximum第2题Atpresent,researchershavesuccessfullyappliedHopfieldneuralnetworktosolvethetravelingsalesmanproblem(TSP),whichisthemostrepresentativeofoptimizationcombinatorialproblems.第3题In1982,AmericanscientistJohnJosephHopfieldputforwardakindoffeedbackneuralnetwork"Hopfieldneuralnetwork"inhispaperNeuralNetworksandPhysicalSystemswithEmergentCollectiveComputationalAbilities.第4题Undertheexcitationofinputx,DHNNentersadynamicchangeprocess,untilthestateofeachneuronisnolongerchanged,itreachesastablestate.Thisprocessisequivalenttotheprocessofnetworklearningandmemory,andthefinaloutputofthenetworkisthevalueofeachneuroninthestablestate.第5题Theorderinwhichneuronsadjusttheirstatesisnotunique.Itcanbeconsideredthatacertainordercanbespecifiedorselectedrandomly.Theprocessofneuronstateadjustmentincludesthreesituations:from0to1,and1to0andunchanged.TestforChapter9第1题ComparedwithGPU,CPUhashigherprocessingspeed,andhassignificantadvantagesinprocessingrepetitivetasks.第2题Atpresent,DCNNhasbecomeoneofthecorealgorithmsinthefieldofimagerecognition,butitisunstablewhenthereisasmallamountoflearningdata.第3题Inthefieldoftargetdetectionandclassification,thetaskofthelastlayerofneuralnetworkistoclassify.第4题InAlexNet,thereare650000neuronswithmorethan600000parametersdistributedinfiveconvolutionlayersandthreefullyconnectedlayersandSoftmaxlayerswith1000categories.第5题VGGNetiscomposedoftwoparts:theconvolutionlayerandthefullconnectionlayer,whichcanberegardedasthedeepenedversionofAlexNet.TestforChapter10第1题TheessenceoftheoptimizationprocessofDandGistofindthe().AmaximumBminimumCminimaxDlocalmaxima第2题Intheartificialneuralnetwork,thequalityofmodelingwilldirectlyaffecttheperformanceofthegenerativemodel,butasmallamountofpriorknowledgeisneededfortheactualcasemodeling.第3题AGANmainlyincludesageneratorGandadiscriminatorD.第4题Becausethegenerativeadversarialnetworkdoesnotneedtodistinguishthelowerboundandapproximateinference,itavoidsthepartitionfunctioncalculationproblemcausedbythetraditionalrepeatedapplicationofMarkovchainlearningmechanism,andimprovesthenetworkefficiency.第5题Fromtheperspectiveofartificialintelligence,GANusesneuralnetworktoguideneuralnetwork,andtheideaisverystrange.TestforChapter11第1题ThecharacteristicofElmanneuralnetworkisthattheoutputofthehiddenlayerisdelayedandstoredbythefeedbacklayer,andthefeedbackisconnectedtotheinputofthehiddenlayer,whichhasthefunctionofinformationstorage.第2题InElmannetwork,thetransferfunctionoffeedbacklayerisnonlinearfunction,andthetransferfunctionofoutputlayeris().AlinearfunctionBnonlinearfunctionCcompetitionfunctionDsymbolicfunction第3题

Amongthemanyimprovedboostingalgorithms,themostsuccessfuloneistheAdaBoost(adaptiveboosting)algorithmproposedbyYoavFreundofUniversityofCaliforniaSanDiegoandRobertSchapireofPrincetonUniversityin1996.第4题TheneuronsinthehiddenlayerofElmannetworkadoptthetangentS-typetransferfunction,whiletheoutputlayeradoptsthelineartransferfunction.Ifthereareenoughneuronsinthefeedbacklayer,thecombinationofthesetransferfunctionscanmakeElmanneuralnetworkapproachanyfunctionwitharbitraryprecisioninfinitetime.第5题Elmanneuralnetworkisakindofdynamicrecurrentnetwork,whichcanbedividedintofullfeedbackandpartialfeedback.Inthepartialrecurrentnetwork,thefeedforwardconnectionweightcanbemodified,andthefeedbackconnectioniscomposedofagroupoffeedbackunits,andtheconnectionweightcannotbemodified.TestforChapter12第1题ThelossfunctionofAdaBoostalgorithmis().AnonlinearfunctionBlinearfunctionClogarithmicfunctionDexponentialfunction第2题Boostingalgorithmisthegeneralnameofaclassofalgorithms.Theircommongroundistoconstructastrongclassifierbyusingagroupofweakclassifiers.Weakclassifiermainlyreferstotheclassifierwhosepredictionaccuracyisnothighandfarbelowtheidealclassificationeffect.Strongclassifiermainlyreferstotheclassifierwithhighpredictionaccuracy.第3题

Amongthemanyimprovedboostingalgorithms,themostsuccessfuloneistheAdaBoost(adaptiveboosting)algorithmproposedbyYoavFreundofUniversityofCaliforniaSanDiegoandRobertSchapireofPrincetonUniversityin1996.第4题ThemostbasicpropertyofAdaBoostisthatitreducesthetrainingerrorcontinuously

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论