上海市华东师大一附中2026届高二数学第一学期期末综合测试试题含解析_第1页
上海市华东师大一附中2026届高二数学第一学期期末综合测试试题含解析_第2页
上海市华东师大一附中2026届高二数学第一学期期末综合测试试题含解析_第3页
上海市华东师大一附中2026届高二数学第一学期期末综合测试试题含解析_第4页
上海市华东师大一附中2026届高二数学第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市华东师大一附中2026届高二数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为()A. B.C. D.2.已知圆,则圆C关于直线对称的圆的方程为()A. B.C. D.3.若、、为空间三个单位向量,,且与、所成的角均为,则()A.5 B.C. D.4.过点且与原点距离最大的直线方程是()A. B.C. D.5.某市2016年至2020年新能源汽车年销量y(单位:百台)与年份代号x的数据如下表:年份20162017201820192020年份代号x01234年销量y1015m3035若根据表中的数据用最小二乘法求得y关于x的回归直线方程为,则表中m的值为()A.22 B.20C.30 D.32.56.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.167.已知集合,,则()A. B.C. D.8.已知等比数列的前项和为,若公比,则=()A. B.C. D.9.直线的方向向量为()A. B.C. D.10.若存在,使得不等式成立,则实数k的取值范围为()A. B.C. D.11.已知直线l和两个不同的平面,,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知抛物线的焦点为,在抛物线上有一点,满足,则的中点到轴的距离为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.作边长为6的正三角形的内切圆,半径记为,在这个圆内作内接正三角形,然后再作新三角形的内切圆.如此下去,第n个正三角形的内切圆半径记为,则______,现有1个半径为的圆,2个半径为的圆,……,个半径为的圆,n个半径为的圆,则所有这些圆的面积之和为______14.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.15.直线的倾斜角为______16.已知,,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的内角的对边分别为a,,若向量,且(1)求角的值;(2)已知的外接圆半径为,求周长的最大值.18.(12分)已知等差数列的前项和为,,且.(1)求数列的通项公式;(2)证明:数列的前项和.19.(12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直,,,.(1)求点C到平面的距离;(2)线段上是否存在点F,使与平面所成角正弦值为,若存在,求出,若不存在,说明理由.20.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围21.(12分)已知函数(1)若在上不单调,求a的范围;(2)试讨论函数的零点个数22.(10分)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点(1)求证:D1F平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.【详解】由于圆上的点在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为,则圆的半径为,圆的标准方程为.由题意可得,可得,解得或,所以圆心的坐标为或,圆心到直线的距离均为;圆心到直线的距离均为圆心到直线的距离均为;所以,圆心到直线的距离为.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.2、B【解析】求得圆的圆心关于直线的对称点,由此求得对称圆的方程.【详解】设圆的圆心关于直线的对称点为,则,所以对称圆的方程为.故选:B3、C【解析】先求的平方后再求解即可.【详解】,故,故选:C4、A【解析】过点且与原点O距离最远的直线垂直于直线,再由点斜式求解即可【详解】过点且与原点O距离最远的直垂直于直线,,∴过点且与原点O距离最远的直线的斜率为,∴过点且与原点O距离最远的直线方程为:,即.故选:A5、B【解析】求出样本中心的横坐标,代入回归直线方程,求出样本中心的纵坐标,然后求解即可【详解】因为,代入回归直线方程为,所以,,于是得,解得故选:B6、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.7、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B8、A【解析】根据题意,由等比数列的通项公式与前项和公式直接计算即可.【详解】由已知可得.故选:A.9、D【解析】根据直线方程,求得斜率k,分析即可得直线的方向向量.【详解】直线变形可得,所以直线的斜率,所以向量为直线的一个方向向量,因为,所以向量为直线的方向向量,故选:D10、C【解析】根据题意和一元二次不等式能成立可得对于,成立,令,利用导数讨论函数的单调性,即可求出.【详解】存在,不等式成立,则,能成立,即对于,成立,令,,则,令,所以当,单调递增,当,单调递减,又,所以f(x)>-3,所以.故选:C11、D【解析】根据直线、平面的位置关系,应用定义法判断两个条件之间的充分、必要性.【详解】当,时,直线l可与平行、相交,故不一定成立,即充分性不成立;当,时,直线l可在平面内,故不一定成立,即必要性不成立.故选:D.12、A【解析】设点,利用抛物线的定义求出的值,可求得点的横坐标,即可得解.【详解】设点,易知抛物线的焦点为,由抛物线的定义可得,得,所以,点的横坐标为,故点到轴的距离为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、①;②..【解析】设第n个三角形的边长为,进而根据题意求出,然后根据等面积法求出,再求出;设n个半径为的圆的面积为并求出,进而运用错位相减法求得答案.【详解】如示意图1,设第n个三角形的边长为,易得,则是以6为首项,为公比的等比数列,所以.如示意图2,易得:,,所以,所以.设n个半径为的圆的面积为,则,记所有圆的面积之和为,则,所以,两式相减得:,即.故答案为:;.14、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:15、【解析】把直线方程化为斜截式,再利用斜率与倾斜角的关系即可得出【详解】设直线的倾斜角为由直线化为,故,又,故,故答案为【点睛】一般地,如果直线方程的一般式为,那么直线的斜率为,且,其中为直线的倾斜角,注意它的范围是16、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】(1)由可得,再利用正弦定理和三角函数恒等变换公可得,从而可求出角的值,(2)利用正弦定理求出,再利用余弦定理结合基本不等式可得的最大值为4,从而可求出三角形周长的最大值【小问1详解】由,得

,由正弦定理,得,即.在中,由,得.又,所以.【小问2详解】根据题意,得,由余弦定理,得,即,整理得,当且仅当时,取等号,所以的最大值为所以.所以的周长的最大值为

.18、(1)(2)证明见解析.【解析】(1)设等差数列的公差为,根据题意可得出关于、的方程组,解出这两个量的值,可得出数列的通项公式;(2)求得,利用裂项法可求得,即可证得原不等式成立.【小问1详解】解:设等差数列的公差为,则,解得,因此,.【小问2详解】证明:,因此,.故原不等式得证.19、(1)(2)存在,1【解析】(1)由题意建立空间直角坐标系,求得平面向量的法向量和相应点的坐标,利用点面距离公式即可求得点面距离(2)假设满足题意的点存在且满足,由题意得到关于的方程,解方程即可确定满足题意的点是否存在【小问1详解】解:如图所示,取中点,连结,,因为三角形是等腰直角三角形,所以,因为面面,面面面,所以平面,又因为,所以四边形是矩形,可得,则,建立如图所示的空间直角坐标系,则:据此可得,设平面的一个法向量为,则,令可得,从而,又,故求点到平面的距离【小问2详解】解:假设存在点,,满足题意,点在线段上,则,即:,,,,,据此可得:,,从而,,,,设与平面所成角所成的角为,则,整理可得:,解得:或(舍去)据此可知,存在满足题意的点,点为的中点,即20、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.21、(1)(2)答案见解析【解析】(1)由:存在使来求得的取值范围.(2)利用分离常数法,结合导数来求得零点个数.【小问1详解】,在上递增,由于在上不单调,所以存使,,所以.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论