版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆昌吉九中2026届高二上数学期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则的最小值为()A. B.C. D.2.设点P是双曲线,与圆在第一象限的交点,、分别是双曲线的左、右焦点,且,则此双曲线的离心率为()A. B.C. D.33.在数列中,,则此数列最大项的值是()A.102 B.C. D.1084.直线平分圆的周长,过点作圆的一条切线,切点为,则()A.5 B.C.3 D.5.正三棱柱各棱长均为为棱的中点,则点到平面的距离为()A. B.C. D.16.《米老鼠和唐老鸭》这部动画给我们的童年带来了许多美好的回忆,令我们印象深刻.如图所示,有人用3个圆构成米奇的简笔画形象.已知3个圆方程分别为:圆圆,圆若过原点的直线与圆、均相切,则截圆所得的弦长为()A. B.C. D.7.下列函数的求导正确的是()A. B.C. D.8.已知数列中,,(),则()A. B.C. D.29.双曲线:的左、右焦点分别为、,过的直线与y轴交于点A、与双曲线右支交于点B,若为等边三角形,则双曲线C的离心率为()A. B.C.2 D.10.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.1211.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C与相等 D.12.曲线在点处的切线方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.执行如图所示的程序框图,则输出的S=__.14.已知数列{}的通项公式为,前n项和为,当取得最小值时,n的值为___________.15.在等比数列中,,则______16.在下列所示电路图中,下列说法正确的是____(填序号)(1)如图①所示,开关A闭合是灯泡B亮的充分不必要条件;(2)如图②所示,开关A闭合是灯泡B亮的必要不充分条件;(3)如图③所示,开关A闭合是灯泡B亮的充要条件;(4)如图④所示,开关A闭合是灯泡B亮的必要不充分条件三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在对某老旧小区污水分流改造时,需要给该小区重新建造一座底面为矩形且容积为324立方米的三级污水处理池(平面图如图所示).已知池的深度为2米,如果池四周围墙的建造单价为400元/平方米,中间两道隔墙的建造单价为248元/平方米,池底的建造单价为80元/平方米,池盖的建造单价为100元/平方米,建造此污水处理池相关人员的劳务费以及其他费用是9000元.(水池所有墙的厚度以及池底池盖的厚度按相关规定执行,计算时忽略不计)(1)现有财政拨款9万元,如果将污水处理池的宽建成9米,那么9万元的拨款是否够用?(2)能否通过合理的设计污水处理池的长和宽,使总费用最低?最低费用为多少万元?18.(12分)已知点A(0,-2),椭圆E:(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.19.(12分)如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.(1)求证:平面平面;(2)若,求异面直线与所成角余弦值;(3)在线段上是否存在一点,使二面角大小为?若存在,请指出点的位置,若不存在,请说明理由.20.(12分)已知椭圆的焦距为,离心率为.(1)求椭圆的方程;(2)若斜率为1的直线与椭圆交于不同的两点,,求的最大值.21.(12分)已知函数(1)当时,求的单调递减区间;(2)若关于的方程恰有两个不等实根,求实数的取值范围22.(10分)已知等差数列中,(1)分别求数列的通项公式和前项和;(2)设,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将代数式展开,然后利用基本不等式可求出该代数式的最小值.【详解】,,由基本不等式得,当且仅当时,等号成立.因此,的最小值为.故选B.【点睛】本题考查利用基本不等式求最值,在利用基本不等式时要注意“一正、二定、三相等”条件的成立,考查计算能力,属于中等题.2、C【解析】根据几何关系得到是直角三角形,然后由双曲线的定义及勾股定理可求解.【详解】点到原点的距离为,又因为在中,,所以是直角三角形,即.由双曲线定义知,又因为,所以.在中,由勾股定理得,化简得,所以.故选:C.3、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D4、B【解析】根据圆的性质,结合圆的切线的性质进行求解即可.【详解】由,所以该圆的圆心为,半径为,因为直线平分圆的周长,所以圆心在直线上,故,因此,,所以有,所以,故选:B5、C【解析】建立空间直角坐标系,利用点面距公式求得正确答案.【详解】设分别是的中点,根据正三棱柱的性质可知两两垂直,以为原点建立如图所示空间直角坐标系,,,.设平面的法向量为,则,故可设,所以点到平面的距离为.故选:C6、A【解析】设直线,利用直线与圆相切,求得斜率,再利用弦长公式求弦长【详解】设过点的直线.由直线与圆、圆均相切,得解得(1).设点到直线的距离为则(2).又圆的半径直线截圆所得弦长结合(1)(2)两式,解得7、B【解析】对各个选项进行导数运算验证即可.【详解】,故A错误;,故B正确;,故C错误;,故D错误.故选:B8、A【解析】由已知条件求出,可得数是以3为周期的周期数列,从而可得,进而可求得答案【详解】因为,(),所以,所以数列的周期为3,,故选:A9、B【解析】由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,求出,在三角形中,由余弦定理求出,从而即可求解.【详解】解:由双曲线的定义知,,又为等边三角形,所以,由对称性有,所以,在直角三角形中,,在三角形中,由余弦定理有,所以,解得,所以双曲线C的离心率,故选:B.10、C【解析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C11、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D12、B【解析】求导,得到曲线在点处的斜率,写出切线方程.【详解】因为,所以曲线在点处斜率为4,所以曲线在点处的切线方程是,即,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,即可求解得答案【详解】解:S=S+=S+,第一次循环,S=1+1﹣,k=2;第二次循环,S=1+1﹣,k=3;第三次循环,S=1+1,k=4;第四次循环,S=1,k=5;第五次循环,S=1+1,k=6,循环停止,输出;故答案为:.14、7【解析】首先求出数列的正负项,再判断取得最小值时n的值.【详解】当,,解得:,当和时,,所以取得最小值时,.故答案为:715、【解析】利用等比数列性质和通项公式可求得,根据可求得结果.【详解】,又,,.故答案为:.16、(1)(2)(3)【解析】充分不必要条件是该条件成立时,可推出结果,但结果不一定需要该条件成立;必要条件是有结果必须有这一条件,但是有这一条件还不够;充要条件是条件和结果可以互推;条件和结果没有互推关系的是既不充分也不必要条件【详解】(1)开关闭合,灯泡亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的充分不必要条件,选项(1)正确.(2)开关闭合,灯泡不一定亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的必要不充分条件,选项(2)正确.(3)开关闭合,灯泡亮;而灯泡亮时,开关必须闭合,所以开关闭合是灯泡亮的充要条件,选项(3)正确.(4)开关闭合,灯泡不一定亮;而灯泡亮时,开关不一定闭合,所以开关闭合是灯泡亮的既不充分也不必要条件,选项(4)错误.故答案为(1)(2)(3).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)不够;(2)将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.【解析】(1)根据题意结合单价直接计算即可得出;(2)设污水处理池的宽为米,表示出总费用,利用基本不等式可求.【小问1详解】如果将污水处理池的宽建成9米,则长为(米),建造总费用为:(元)因为,所以如果污水处理池的宽建成9米,那么9万元的拨款是不够用的.【小问2详解】设污水处理池的宽为米,建造总费用为元,则污水处理池的长为米.则因为,等号仅当,即时成立,所以时建造总费用取最小值90000,所以将污水处理池建成长为16.2米,宽为10米时,建造总费用最低,最低费用为90000元.18、(1)(2)【解析】设出,由直线的斜率为求得,结合离心率求得,再由隐含条件求得,即可求椭圆方程;(2)点轴时,不合题意;当直线斜率存在时,设直线,联立直线方程和椭圆方程,由判别式大于零求得的范围,再由弦长公式求得,由点到直线的距离公式求得到的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出值,则直线方程可求.试题解析:(1)设,因为直线的斜率为,所以,.又解得,所以椭圆的方程为.(2)解:设由题意可设直线的方程为:,联立消去得,当,所以,即或时.所以点到直线的距离所以,设,则,,当且仅当,即,解得时取等号,满足所以的面积最大时直线的方程为:或.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.19、(1)证明见解析;(2);(3)存在,点在线段上位于靠近点的四等分点处.【解析】(1)证明平面,利用面面垂直的判定定理可证得结论成立;(2)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可求得异面直线与所成角的余弦值;(3)假设存在点,设,其中,利用空间向量法可得出关于的方程,结合的取值范围可求得的值,即可得出结论.【小问1详解】证明:,,为的中点,则且,四边形为平行四边形,.,即,,又平面平面,平面平面,平面,平面平面,平面平面.【小问2详解】解:,为的中点,.平面平面,且平面平面,平面,平面.如图,以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,则、、、、,,,则,,异面直线与所成角的余弦值为.【小问3详解】解:假设存在点,设,其中,所以,,且,设平面法向量为,所以,令,可得,由(2)知平面的一个法向量为,二面角为,则,整理可得,因,解得.故存在点,且点在线段上位于靠近点的四等分点处.20、(1);(2).【解析】(1)由题设可得且,结合椭圆参数关系求,即可得椭圆的方程;(2)设直线为,联立抛物线整理成一元二次方程的形式,由求m的范围,再应用韦达定理及弦长公式求关于m的表达式,根据二次函数性质求最值即可.小问1详解】由题设,且,故,,则,所以椭圆的方程为.【小问2详解】设直线为,联立椭圆并整理得:,所以,可得,且,,所以且,故当时,.21、(1);(2)【解析】(1)求出导数,令,得出变化情况表,即可得出单调区间;(2)分离参数得,构造函数,利用导数讨论单调性,根据与恰有两个不同交点即可得出.【详解】(1)当时,函数,则令,得,,当x变化时,的变化情
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GBT 21470-2008锤上钢质自由锻件机械加工余量与公差 盘、柱、环、筒类》专题研究报告
- 《GBT 14296-2008空气冷却器与空气加热器》专题研究报告
- 道路养护安全培训方案模板课件
- 2025-2026年湘教版初三历史上册期末试题解析+答案
- 2026年六年级数学上册期末试题+解析
- 2026年江苏高考生物试卷含答案
- 2025-2026年人教版五年级数学上册期末试题解析及答案
- 《中国法布雷病超声心动图规范化筛查指南(2024版)》解读
- 中考语文文言文对比阅读(全国)01 《咏雪》对比阅读(原卷版)
- 边城课件基本知识
- 矿产企业管理办法
- 2025秋季学期国开电大专本科《经济法学》期末纸质考试名词解释题库珍藏版
- 建筑设计防火规范-实施指南
- 2025国开《中国古代文学(下)》形考任务1234答案
- 肺部感染中医护理
- 租地合同协议书合同
- 《肺炎的CT表现》课件
- 粮食仓储设施建设维修资金申请报告
- 脑器质性精神障碍护理查房
- 中考英语听力命题研究与解题策略省公开课金奖全国赛课一等奖微课获奖课件
- 物联网智能家居设备智能控制手册
评论
0/150
提交评论