2026届海南省海口四中高二上数学期末检测试题含解析_第1页
2026届海南省海口四中高二上数学期末检测试题含解析_第2页
2026届海南省海口四中高二上数学期末检测试题含解析_第3页
2026届海南省海口四中高二上数学期末检测试题含解析_第4页
2026届海南省海口四中高二上数学期末检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届海南省海口四中高二上数学期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线,若的倾斜角为60°,则的斜率为()A. B.C. D.2.已知数列是等差数列,为数列的前项和,,,则()A.54 B.71C.81 D.803.某公司有320名员工,将这些员工编号为1,2,3,…,320,从这些员工中使用系统抽样的方法抽取20人进行“学习强国”的问卷调查,若54号被抽到,则下面被抽到的是()A.72号 B.150号C.256号 D.300号4.椭圆的左、右焦点分别为,过焦点的倾斜角为直线交椭圆于两点,弦长,若三角形的内切圆的面积为,则椭圆的离心率为()A. B.C. D.5.已知函数的图象在点处的切线与直线平行,若数列的前项和为,则的值为()A. B.C. D.6.已知等差数列,且,则()A.3 B.5C.7 D.97.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.8.已知数列{an}的前n项和为Sn,满足a1=1,-=1,则an=()A.2n-1 B.nC.2n-1 D.2n-19.已知椭圆的右焦点和右顶点分别为F,A,离心率为,且,则n的值为()A.4 B.3C.2 D.10.有6本不同的书,按下列方式进行分配,其中分配种数正确的是()A.分给甲、乙、丙三人,每人各2本,有15种分法;B.分给甲、乙、丙三人中,一人4本,另两人各1本,有180种分法;C.分给甲乙每人各2本,分给丙丁每人各1本,共有90种分法;D.分给甲乙丙丁四人,有两人各2本,另两人各1本,有1080种分法;11.在直三棱柱中,底面是等腰直角三角形,,则与平面所成角的正弦值为()A. B.C. D.12.从装有2个红球和2个白球的袋内任取2个球,那么互斥而不对立的两个事件是()A.取出的球至少有1个红球;取出的球都是红球B.取出的球恰有1个红球;取出的球恰有1个白球C.取出的球至少有1个红球;取出的球都是白球D.取出的球恰有1个白球;取出的球恰有2个白球二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为_________14.圆锥的轴截面是边长为2的等边三角形,为底面中心,为的中点,动点在圆锥底面内(包括圆周).若,则点形成的轨迹的长度为______15.点到直线的距离为______.16.二进制数转化成十进制数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且(1)求曲线在点处的切线方程;(2)求函数在区间上的最小值18.(12分)已知抛物线C:()的焦点为F,原点O关于点F的对称点为Q,点关于点Q的对称点,也在抛物线C上(1)求p的值;(2)设直线l交抛物线C于不同两点A、B,直线、与抛物线C的另一个交点分别为M、N,,,且,求直线l的横截距的最大值.19.(12分)已知函数,是的一个极值点.(1)求b的值;(2)当时,求函数的最大值.20.(12分)著名的“康托尔三分集”是由德国数学家康托尔构造的,是人类理性思维的产物,其操作过程如下:将闭区间均分为三段,去掉中间的区间段记为第一次操作;再将剩下的两个闭区间,分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷.每次操作后剩下的闭区间构成的集合即是“康托尔三分集”.例如第一次操作后的“康托尔三分集”为.(1)求第二次操作后的“康托尔三分集”;(2)定义的区间长度为,记第n次操作后剩余的各区间长度和为,求;(3)记n次操作后“康托尔三分集”的区间长度总和为,若使不大于原来的,求n的最小值.(参考数据:,)21.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程22.(10分)已知函数,其中(1)当时,求函数的单调区间;(2)①若恒成立,求的最小值;②证明:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】直线,斜率乘积为,斜线斜率等于倾斜角的正切值.【详解】,,所以.故选:D.2、C【解析】利用等差数列的前n项和公式求解.【详解】∵是等差数列,,∴,得,∴.故选:C.3、B【解析】根据系统抽样分成20个小组,每组16人中抽一人,故抽到的序号相差16的整数倍,即可求解.【详解】∵用系统抽样的方法从320名员工中抽取一个容量为20的样本∴,即每隔16人抽取一人∵54号被抽到∴下面被抽到的是54+16×6=150号,而其他选项中的数字不满足与54相差16的整数倍,故答案为:B故选:B4、C【解析】由题可得直线AB的方程,从而可表示出三角形面积,又利用焦点三角形及三角形内切圆的性质,也可表示出三角形面积,则椭圆的离心率即求.【详解】由题知直线AB的方程为,即,∴到直线AB距离,又三角形的内切圆的面积为,则半径为1,由等面积可得,.故选:C.5、A【解析】函数的图象在点处的切线与直线平行,利用导函数的几何含义可以求出,转化求解数列的通项公式,进而由数列的通项公式,利用裂项相消法求和即可【详解】解:∵函数的图象在点处的切线与直线平行,由求导得:,由导函数得几何含义得:,可得,∴,所以,∴数列的通项为,所以数列的前项的和即为,则利用裂项相消法可以得到:所以数列的前2021项的和为:.故选:A.6、B【解析】根据等差数列的性质求得正确答案.【详解】由于数列是等差数列,所以.故选:B7、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.8、A【解析】由题可得,利用与的关系即求.【详解】∵a1=1,-=1,∴是以1为首项,以1为公差的等差数列,∴,即,∴当时,,当时,也适合上式,所以故选:A.9、B【解析】根据椭圆方程及其性质有,求解即可.【详解】由题设,,整理得,可得.故选:B10、D【解析】根据题意,分别按照选项说法列式计算验证即可做出判断.【详解】选项A,6本不同的书分给甲、乙、丙三人,每人各2本,有种分配方法,故该选项错误;选项B,6本不同的书分给甲、乙、丙三人,一人4本,另两人各1本,先将6本书分成4-1-1的3组,再将三组分给甲乙丙三人,有种分配方法,故该选项错误;选项C,6本不同的书分给甲乙每人各2本,有种方法,其余分给丙丁每人各1本,有种方法,所以不同的分配方法有种,故该选项错误;选项D,先将6本书分为2-2-1-14组,再将4组分给甲乙丙丁4人,有种方法,故该选项正确.故选:D.11、C【解析】取的中点,连接,易证平面,进一步得到线面角,再解三角形即可.【详解】如图,取的中点,连接,三棱柱为直三棱柱,则平面,又平面,所以,又由题意可知为等腰直角三角形,且为斜边的中点,从而,而平面,平面,且,所以平面,则为与平面所成的角.在直角中,.故选:C12、D【解析】利用互斥事件、对立事件的定义逐一判断即可.【详解】A答案中的两个事件可以同时发生,不是互斥事件B答案中的两个事件可以同时发生,不是互斥事件C答案中的两个事件不能同时发生,但必有一个发生,既是互斥事件又是对立事件D答案中的两个事件不能同时发生,也可以都不发生,故是互斥而不对立事件故选:D【点睛】本题考查的是互斥事件和对立事件的概念,较简单.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】根据给定条件探求出椭圆长轴长与其焦距的关系即可计算作答.【详解】设椭圆长轴长为,焦距为,即,依题意,,而直线是圆的切线,即,则有,又点在椭圆上,即,因此,,从而有,所以椭圆的离心率为.故答案为:14、【解析】建立空间直角坐标系设,,,,于是,,因为,所以,从而,,此为点形成的轨迹方程,其在底面圆盘内的长度为15、【解析】直接利用点到直线的距离公式计算即可.【详解】点到直线的距离为.故答案为:.16、13【解析】根据二进制数和十进制数之间的转换方法即可求解.【详解】.故答案为:13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意,求出的值,然后根据导数的几何意义即可求解;(2)根据导数与函数单调性关系,判断函数在区间上的单调性,从而即可求解.【小问1详解】解:由题意,,因为,所以,解得,所以,,因为,,所以曲线在点处的切线方程为,即;【小问2详解】解:因为,,所以时,,时,,所以在上单调递减,在上单调递增,所以,即函数在区间上的最小值为.18、(1);(2)最大横截距为.【解析】(1)首先写出的坐标,根据对称关系求出的坐标,带入即可求出.(2)设直线l的方程为,带入抛物线方程利用韦达定理,计算出直线l的横截距的表达式从而求出其最大值.【详解】(1)由题知,,故,代入C的方程得,∴;(2)设直线l的方程为,与抛物线C:联立得,由题知,可设方程两根为,,则,,(*)由得,∴,,又点M在抛物线C上,∴,化简得,由题知M,A为不同两点,故,,即,同理可得,∴,将(*)式代入得,即,将其代入解得,∴在时取得最大值,即直线l的最大横截距为.19、(1);(2)【解析】(1)先求出导函数,再根据x=2是的一个极值点对应x=2是导数为0的根即可求b的值;(2)根据(1)的结论求出函数的极值点,通过比较极值与端点值的大小从而确定出最大值.【小问1详解】由题设,.∵x=2是的一个极值点,∴x=2是的一个根,代入解得:.经检验,满足题意.【小问2详解】由(1)知:,则.令,解得x=1或x=2.x1(1,2)2(2,3)30﹣0+递减递增∵当x∈(1,2)时,即在(1,2)上单调递减;当x∈(2,3)时,即在(2,3)上单调递增.∴当x∈[1,3]时,函数的最大值为与中的较大者.∴函数的最大值为.20、(1)(2)(3)【解析】(1)根据“康托尔三分集”的定义,即可求得第二次操作后的“康托尔三分集”;(2)根据“康托尔三分集”的定义,分别求得前几次的剩余区间长度的和,求得其通项公式,即可求解;(3)由(2)可得第次操作剩余区间的长度和为,结合题意,得到,利用对数的运算公式,即可求解.【小问1详解】解:根据“康托尔三分集”的定义可得:第一次操作后的“康托尔三分集”为,第二次操作后的“康托尔三分集”为;【小问2详解】解:将定义的区间长度为,根据“康托尔三分集”的定义可得:每次去掉的区间长后组成的数为以为首项,为公比的等比数列,第1次操作去掉的区间长为,剩余区间的长度和为,第2次操作去掉两个区间长为的区间,剩余区间的长度和为,第3次操作去掉四个区间长为的区间,剩余区间的长度和为,第4次操作去掉个区间长为,剩余区间的长度和为,第次操作去掉个区间长为,剩余区间的长度和为,所以第次操作后剩余的各区间长度和为;【小问3详解】解:设定义区间,则区间长度为1,由(2)可得第次操作剩余区间的长度和为,要使得“康托三分集”的各区间的长度之和不大于,则满足,即,即,因为为整数,所以的最小值为.21、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.22、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论