2026届上海市上师大附中 数学高二上期末统考模拟试题含解析_第1页
2026届上海市上师大附中 数学高二上期末统考模拟试题含解析_第2页
2026届上海市上师大附中 数学高二上期末统考模拟试题含解析_第3页
2026届上海市上师大附中 数学高二上期末统考模拟试题含解析_第4页
2026届上海市上师大附中 数学高二上期末统考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市上师大附中数学高二上期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设为数列的前n项和,,且满足,若,则()A.2 B.3C.4 D.52.下列关于命题的说法错误的是A.命题“若,则”的逆否命题为“若,则”B.“”是“函数在区间上为增函数”的充分不必要条件C.命题“,使得”的否定是“,均有”D.“若为的极值点,则”的逆命题为真命题3.如图,在三棱锥中,点E在上,满足,点F为的中点,记分别为,则()A. B.C. D.4.已知,,,,则下列不等关系正确的是()A. B.C. D.5.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.76.小方每次投篮的命中率为,假设每次投篮相互独立,则他连续投篮2次,恰有1次命中的概率为()A. B.C. D.7.圆x2+y2-4=0与圆x2+y2-4x+4y-12=0公共弦所在直线方程为()A. B.C. D.8.在平面直角坐标系xOy中,双曲线(,)的左、右焦点分别为,,点M是双曲线右支上一点,,且,则双曲线的离心率为()A. B.C. D.9.已知抛物线的焦点为,为抛物线上一点,为坐标原点,且,则()A.4 B.2C. D.10.若是真命题,是假命题,则A.是真命题 B.是假命题C.是真命题 D.是真命题11.已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,若,则|QF|=()A. B.C.3 D.212.若等差数列的前项和为,首项,,,则满足成立的最大正整数是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,,,则动点P的轨迹方程为______,P到坐标原点的距离的最小值为______14.若在上是减函数,则实数a的取值范围是_________.15.如图所示,二面角为,是棱上的两点,分别在半平面内,且,,,,,则的长______16.已知向量,,,若,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围18.(12分)已知椭圆的左、右焦点分别为,过右焦点作直线交于,其中的周长为的离心率为.(1)求的方程;(2)已知的重心为,设和的面积比为,求实数的取值范围.19.(12分)已知数列是公差为2的等差数列,它的前n项和为Sn,且成等比数列.(1)求的通项公式;(2)求数列的前n项和.20.(12分)已知椭圆的长轴在轴上,长轴长为4,离心率为,(1)求椭圆的标准方程,并指出它的短轴长和焦距.(2)直线与椭圆交于两点,求两点的距离.21.(12分)已知等比数列的首项,公比,在中每相邻两项之间都插入3个正数,使它们和原数列的数一起构成一个新的等比数列.(1)求数列的通项公式;(2)记数列前n项的乘积为,试问:是否有最大值?如果是,请求出此时n以及最大值;若不是,请说明理由.22.(10分)已知椭圆的右焦点为,且经过点.(1)求椭圆的标准方程;(2)设椭圆的左顶点为,过点的直线(与轴不重合)交椭圆于两点,直线交直线于点,若直线上存在另一点,使.求证:三点共线.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知条件可得数列为首项为2,公差为2的等差数列,然后根据结合等差数列的求和公式可求得答案【详解】在等式中,令,可得,所以数列为首项为2,公差为2的等差数列,因为,所以,化简得,,解得或(舍去),故选:B2、D【解析】根据命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识一一判断可得答案.【详解】解:A,由原命题与逆否命题的构成关系,可知A正确;B,当a=2>1时,函数在定义域内是单调递增函数,当函数定义域内是单调递增函数时,a>1.所以B正确;C,由于存在性命题的否定是全称命题,所以",使得"的否定是",均有,所以C正确;D,的根不一定是极值点,例如:函数,则=0,即x=0就不是极值点,所以“若为的极值点,则”的逆命题为假命题,故选D.【点睛】本题主要考查命题及其关系、充分条件与必要条件、导数在函数中应用、全称量词与存在量词等相关知识,需牢记并灵活运用相关知识.3、B【解析】利用空间向量加减、数乘的几何意义,结合三棱锥用表示出即可.【详解】由题设,,,,.故选:B4、C【解析】不等式性质相关的题型,可以通过举反例的方式判断正误.【详解】若、均为负数,因为,则,故A错.若、,则,故B错.由不等式的性质可知,因为,所以,故C对.若,因为,所以,故D错.故选:C.5、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C6、A【解析】先弄清连续投篮2次,恰有1次命中的情况有两种,它们是互斥关系,因此根据相互独立事件以及互斥事件的概率计算公式进行求解.【详解】由题意知,他连续投篮2次,有两种互斥的情况,即第一次投中第二次不中和第一次不中第二次投中,因此恰有1次命中的概率为,故选:A.7、B【解析】两圆的方程消掉二次项后的二元一次方程即为公共弦所在直线方程.【详解】由x2+y2-4=0与x2+y2-4x+4y-12=0两式相减得:,即.故选:B8、A【解析】本题考查双曲线的定义、几何性质及直角三角形的判定即可解决.【详解】因为,,所以在中,边上的中线等于的一半,所以.因为,所以可设,,则,解得,所以,由双曲线的定义得,所以双曲线的离心率故选:A9、B【解析】依题意可得,设,根据可得,,根据为抛物线上一点,可得.【详解】依题意可得,设,由得,所以,,所以,,因为为抛物线上一点,所以,解得.故选:B.【点睛】本题考查了平面向量加法的坐标运算,考查了求抛物线方程,属于基础题.10、D【解析】因为是真命题,是假命题,所以是假命题,选项A错误,是真命题,选项B错误,是假命题,选项C错误,是真命题,选项D正确,故选D.考点:真值表的应用.11、C【解析】过点Q作QQ′⊥l交l于点Q′,利用抛物线定义以及相似得到|QF|=|QQ′|=3.【详解】如图所示:过点Q作QQ′⊥l交l于点Q′,因为,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C.【点睛】本题考查了抛物线的定义应用,意在考查学生的计算能力.12、B【解析】由等差数列的,及得数列是递减的数列,因此可确定,然后利用等差数列的性质求前项和,确定和的正负【详解】∵,∴和异号,又数列是等差数列,首项,∴是递减的数列,,由,所以,,∴满足的最大自然数为4040故选:B【点睛】关键点睛:本题求满足的最大正整数的值,关键就是求出,时成立的的值,解题时应充分利用等差数列下标和的性质求解,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.l【解析】根据双曲线的定义得到动点的轨迹方程,从而求出到坐标原点的距离的最小值;【详解】解:因为,所以动点P的轨迹为以A,B为焦点,实轴长为2的双曲线的下支.因为,,所以,,,所以动点P的轨迹方程为故P到坐标原点的距离的最小值为故答案为:;;14、【解析】根据导数的性质,结合常变量分离法进行求解即可.【详解】,因为在上是减函数,所以在上恒成立,即,当时,的最小值为,所以,故答案为:15、【解析】推导出,从而,结合,,,能求出的长【详解】二面角为,是棱上的两点,分别在半平面、内,且所以,所以,,,的长故答案为【点睛】本题主要考查空间向量的运算法则以及数量积的运算法则,意在考查灵活应用所学知识解答问题的能力,是中档题16、【解析】首先求出的坐标,再根据向量垂直得到,即可得到方程,解得即可;【详解】解:因为向量,,,所以向量,因为,所以,即,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由导数几何意义得切线斜率为,再根据点斜式写切线方程;(2)由函数图像可知,极大值大于零且极小值小于零,解不等式可得c的取值范围试题解析:解:(I)由,得因为,,所以曲线在点处的切线方程为(II)当时,,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,,,使得由的单调性知,当且仅当时,函数有三个不同零点18、(1)(2)【解析】(1)已知焦点弦三角形的周长,以及离心率求椭圆方程,待定系数直接求解即可.(2)第一步设点设直线,第二步联立方程韦达定理,第三步条件转化,利用三角形等面积法,列方程,第四步利用韦达定理进行转化,计算即可.【小问1详解】因为的周长为,的离心率为,所以,,所以,,又,所以椭圆的方程为.【小问2详解】方法一:,,的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.令,②则,可得当时,当时,所以,又解得③由①②③得,解得.所以实数的取值范围是.方法二:同方法一可得的面积为,的面积为,则,得,①设,与椭圆C方程联立,消去得,由韦达定理得,.所以因为,所以解得②由①②解得.所以实数的取值范围是.19、(1),(2)【解析】(1)由题意可得,从而可求出,进而可求得的通项公式;(2)由(1)可得,然后利用裂项相消求和法可求得结果【详解】(1)因为数列是公差为2的等差数列,且成等比数列,所以即,解得,所以;(2)由(1)得,所以.20、(1),短轴长为,焦距为;(2).【解析】(1)由长轴得,再由离心率求得,从而可得后可得椭圆方程;(2)直线方程与椭圆方程联立方程组求得交点坐标后可得距离【详解】(1)由已知:,,故,,则椭圆的方程为:,所以椭圆的短轴长为,焦距为.(2)联立,解得,,所以,,故21、(1)(2)当或时,有最大值.【解析】(1)利用等比数列通项公式求解即可;(2)求出数列的前n项的乘积为,利用二次函数的性质求最值即可.【小问1详解】由已知得,数列首项,,设数列的公比为,即∴即,【小问2详解】,即当或5时,有最大值.22、(1);(2)证明见解析.【解析】(1)根据给定条件利用椭圆的定义求出轴长即可计算作答.(2)根据给定条件设出的方程,与椭圆C的方程联立,求出直线PA的方程并求出点M的坐标,求出点N的坐标,再利用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论