版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河南省辉县市一高高二数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知平面内有一点,平面的一个法向量为,则下列四个点中在平面内的是()A. B.C. D.2.已知奇函数,则的解集为()A. B.C. D.3.已知点在平面内,是平面的一个法向量,则下列各点在平面内的是()A. B.C. D.4.在数列中,,,,则()A.2 B.C. D.15.已知直线,两个不同的平面,,则下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.在递增等比数列中,为其前n项和.已知,,且,则数列的公比为()A.3 B.4C.5 D.67.已知实数a,b,c,若a>b,则下列不等式成立的是()A B.C. D.8.已知双曲线的左、右焦点分别为,点在的左支上,过点作的一条渐近线的垂线,垂足为,则的最小值为()A. B.C. D.9.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同10.在四面体中,点G是的重心,设,,,则()A. B.C. D.11.春秋时期孔子及其弟子所著的《论语·颜渊》中有句话:“非礼勿视,非礼勿听,非礼勿言,非礼勿动.”意思是:不符合礼的不看,不符合礼的不听,不符合礼的不说,不符合礼的不做.“非礼勿听”可以理解为:如果不合礼,那么就不听.从数学角度来说,“合礼”是“听”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件12.设,,,则,,大小关系是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列满足,,,则公差______14.秦九韶出生于普州(今资阳市安岳县),是我国南宋时期伟大的数学家,他创立的秦九韶算法历来为人称道,其本质是将一个次多项式写成个一次式相组合的形式,如可将写成,由此可得__________15.已知.若在定义域内单调递增,则实数的取值范围为______.16.函数的导函数___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.18.(12分)已知正项数列的首项为,且满足,(1)求证:数列为等比数列;(2)记,求数列的前n项和19.(12分)已知椭圆的离心率为,过左焦点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)点为椭圆的长轴上的一个动点,过点且斜率为的直线交椭圆于两点,证明为定值.20.(12分)已知抛物线:的焦点是圆与轴的一个交点.(1)求抛物线的方程;(2)若过点的直线与抛物线交于不同的两点A、B,О为坐标原点,证明:.21.(12分)【2018年新课标I卷文】已知函数(1)设是的极值点.求,并求的单调区间;(2)证明:当时,22.(10分)已知:,,:,,且为真命题,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】设所求点的坐标为,由,逐一验证选项即可【详解】设所求点的坐标为,则,因为平面的一个法向量为,所以,,对于选项A,,对于选项B,,对于选项C,,对于选项D,故选:A2、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.3、B【解析】设平面内的一点为,由可得,进而可得满足的方程,将选项代入检验即可得正确选项.【详解】设平面内的一点为(不与点重合),则,因为是平面的一个法向量,所以,所以,即,对于A:,故选项A不正确;对于B:,故选项B正确;对于C:,故选项C不正确;对于D:,故选项D不正确,故选:B.4、A【解析】根据题中条件,逐项计算,即可得出结果.【详解】因为,,,所以,因此.故选:A.5、C【解析】对于A,可能在内,故可判断A;对于B,可能相交,故可判断B;对于C,根据线面垂直的判定定理,可判定C;对于D,和可能平行,或斜交或在内,故可判断D.【详解】对于A,除了外,还有可能在内,故可判断A错误;对于B,,那么可能相交,故可判断B错误;对于C,根据线面平行的性质定理可知,在内一定存在和平行的直线,那么该直线也垂直于,所以,故判定C正确;对于D,,,则和可能平行,或斜交或在内,故可判D.错误,故选:C.6、B【解析】由已知结合等比数列的性质可求出、,然后结合等比数列的求和公式求解即可.【详解】解:由题意得:是递增等比数列又,,故故选:B7、C【解析】根据不等式的性质逐一分析即可得出答案.【详解】解:对于A,因为a>b,若,则,故A错误;对于B,若,则,故B错误;对于C,若a>b,又,所以,故C正确;对于D,当时,,故D错误.故选:C.8、D【解析】利用双曲线定义可得到,将的最小值变为的最小值问题,数形结合得解.【详解】由题意得,故,如图所示:到渐近线的距离,则,当且仅当,,三点共线时取等号,∴的最小值为.故选:D9、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:10、B【解析】结合重心的知识以及空间向量运算求得正确答案.【详解】设是中点,.故选:B11、B【解析】如果不合礼,那么就不听.转化为它的逆否命题.即可判断出答案.【详解】如果不合礼,那么就不听的逆否命题为:如果听,那么就合理.故“合礼”是“听”的必要条件.故选:B.12、A【解析】构造函数,根据的单调性可得(3),从而得到,,的大小关系【详解】考查函数,则,在上单调递增,,(3),即,,故选:【点睛】本题考查了利用函数的单调性比较大小,考查了构造法和转化思想,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据等差数列性质求得,再根据题意列出相关的方程组,解得答案.【详解】为等差数列,故由可得:,即,故,故,所以,解得,故答案为:214、【解析】利用代入法进行求解即可.【详解】故答案为:15、【解析】将问题转化为在上恒成立,再分离参数转化为求函数的最值问题即可得到实数的取值范围【详解】因为,所以;因为在内单调递增,所以在上恒成立,即在上恒成立,因为,所以.故答案为:16、【解析】利用导函数的乘法公式和复合函数求导法则进行求解【详解】故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)分析可知直线的方程为,将直线的方程与抛物线方程联立,求出点的坐标,利用抛物线的定义可求得;(2)利用点差法可求得直线的斜率,利用点斜式可得出直线的方程.【小问1详解】解:设点、,则直线的倾斜角为,易知点,直线的方程为,联立,可得,由题意可知,则,,因此,.【小问2详解】解:设、,若轴,则线段的中点在轴上,不合乎题意,所以直线的斜率存在,因为、在抛物线上,则,两式相减得,又因为为的中点,则,所以,直线的斜率为,此时,直线的方程为,即.18、(1)证明见解析(2)【解析】(1)由递推关系式化简及等比数列的的定义证明即可;(2)根据裂项相消法求解即可得解.【小问1详解】证明:由得,而且,则,即数列为首项,公比为的等比数列【小问2详解】由上可知,所以,19、(1);(2)证明见解析.【解析】(1)借助题设条件建立方程组求解;(2)依据题设运用直线与椭圆的位置关系探求.试题解析:(1)由,可得椭圆方程.(2)设的方程为,代入并整理得:.设,,则,同理则.所以,是定值.考点:椭圆的标准方程几何性质及直线与椭圆的位置关系等有关知识的综合运用【易错点晴】本题考查的是椭圆的标准方程等基础知识及直线与椭圆的位置关系等知识的综合性问题.解答本题的第一问时,直接依据题设条件运用椭圆的几何性质和椭圆的有关概念建立方程组,进而求得椭圆的标准方程为;第二问的求解过程中,先设直线的方程为,再借助二次方程中根与系数之间的关系,依据坐标之间的关系进行计算探求,从而使得问题获解.20、(1)(2)证明见解析【解析】(1)由圆与轴的交点分别为,可得抛物线的焦点为,从而即可求解;(2)设直线为,联立抛物线方程,由韦达定理及,求出即可得证.【小问1详解】解:由题意知,圆与轴的交点分别为,则抛物线的焦点为,所以,所以抛物线方程为;【小问2详解】证明:设直线为,联立方程,有,所以,所以,所以.21、(1)a=;f(x)在(0,2)单调递减,在(2,+∞)单调递增.(2)证明见解析.【解析】分析:(1)先确定函数的定义域,对函数求导,利用f′(2)=0,求得a=,从而确定出函数的解析式,之后观察导函数的解析式,结合极值点的位置,从而得到函数的增区间和减区间;(2)结合指数函数的值域,可以确定当a≥时,f(x)≥,之后构造新函数g(x)=,利用导数研究函数的单调性,从而求得g(x)≥g(1)=0,利用不等式的传递性,证得结果.详解:(1)f(x)的定义域为,f′(x)=aex–由题设知,f′(2)=0,所以a=从而f(x)=,f′(x)=当0<x<2时,f′(x)<0;当x>2时,f′(x)>0所以f(x)在(0,2)单调递减,在(2,+∞)单调递增(2)当a≥时,f(x)≥设g(x)=,则当0<x<1时,g′(x)<0;当x>1时,g′(x)>0.所以x=1是g(x)的最小值点故当x>0时,g(x)≥g(1)=0因此,当时,点睛:该题考查的是有关导数的应用问题,涉及到的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要保证函数的生存权,先确定函数的定义域,之后根据导数与极值的关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年宁德市蕉城园投港务有限公司招聘备考题库及答案详解一套
- 2026年国能生物发电集团有限公司招聘备考题库有答案详解
- 2026年上海外国语大学附属外国语学校松江云间中学校园招聘备考题库完整参考答案详解
- 2026年中国安能集团第一工程局有限公司湖南分公司招聘备考题库及参考答案详解
- 2026年慈溪市桥头初级中学公开招聘派遣制工作人员备考题库及答案详解1套
- 2026年中国能源建设集团沈阳电力机械总厂有限公司招聘备考题库及答案详解一套
- 2026年中国科学院地理科学与资源研究所土地科学与生物地理研究室劳务派遣制行政助理招聘备考题库及一套完整答案详解
- 2026年同济大学继续教育学院招生专员岗位招聘备考题库参考答案详解
- 2026年内江市市中区中医医院招聘员额人员备考题库及答案详解1套
- 2026年三亚市公安局公开招聘下属事业单位工作人员24人备考题库(第1号)及一套参考答案详解
- 2025年铍矿行业分析报告及未来发展趋势预测
- 涉爆粉尘专项知识培训课件
- 化学剥脱美容技术
- 医疗机构传染病隔离区域设置与管理要求
- 2025年数学广东一模试卷及答案
- 安全总监先进个人材料范文
- 2025年高速公路收费员考试题(附答案+解析)
- 智算中心大模型训练部署方案
- 2025年中国BBU备用电源行业市场全景分析及前景机遇研判报告
- 幼儿园大班社会教案《影子变变变》含反思
- 2025高度近视防控专家共识
评论
0/150
提交评论