2025年人工智能赋能学生参与度提升:全球新兴策略综述报告 AI for Student Engagement A Global Review of Emerging Strategies-数字教育委员会_第1页
2025年人工智能赋能学生参与度提升:全球新兴策略综述报告 AI for Student Engagement A Global Review of Emerging Strategies-数字教育委员会_第2页
2025年人工智能赋能学生参与度提升:全球新兴策略综述报告 AI for Student Engagement A Global Review of Emerging Strategies-数字教育委员会_第3页
2025年人工智能赋能学生参与度提升:全球新兴策略综述报告 AI for Student Engagement A Global Review of Emerging Strategies-数字教育委员会_第4页
2025年人工智能赋能学生参与度提升:全球新兴策略综述报告 AI for Student Engagement A Global Review of Emerging Strategies-数字教育委员会_第5页
已阅读5页,还剩70页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AIforStudentEngagement

AGlobalReviewofEmergingStrategies

TableofContents

TableofContents

ExecutiveSummary3

UnpackingStudentEngagement4

TheShiftingLandscapeofStudentEngagementintheAIEra5

DeeperFaculty–StudentEngagement7

BroaderPeer-to-PeerExchange8

RicherStudent–ContentInteraction9

ResponsibleHuman-AICollaboration9

ThePracticalGuidetoAI-EnhancedStudentEngagement12

FacultyInteraction13

PeerExchange17

ContentandAssessment21

InstructionalDelivery27

ExperientialandAppliedLearning31

EnvironmentandInclusivity34

FromPracticestoImpact37

Contributors,CopyrightandContactDetails38

AIforStudentEngagement2

AIforStudentEngagement3

ExecutiveSummary

ExecutiveSummary

AIisreshapingstudentengagement,acomplexandmultifacetedfield.Yetinstitutionalefforts

remainfragmented,withlimitedclarityonhowAIcanmeaningfullyenhanceengagement.

ThisreportoffersafirstcomprehensiveglobalreviewofAIinstudentengagement.Drawingon106casestudies,itidentifies24emerging

methodologiesacrosssixengagementaspects:

·FacultyInteraction·PeerExchange

·ContentandAssessment·InstructionalDelivery

·ExperientialandAppliedLearning·EnvironmentandInclusivity

Eachmethodologyispresentedwithpractical

guidance:implementationcontexts,step-by-stepapplications,real-worldexamples,andobservedimpact.

AI’spresencehasalteredtherelationaldynamicsofengagement.Beyondintroducinganew

student–AIcollaborationitisreshapingtraditionalrelationshipsbetweenstudents,faculty,peers,

andcontent.Thisshiftrevealsfourkey

opportunities:DeeperFaculty–Student

Engagement,BroaderPeer-to-PeerExchange,

RicherStudent–ContentInteraction,ResponsibleHuman-AICollaboration

Groundedinglobalpractice,thisreportprovidesinstitutionswithapracticalguidetorethink

studentengagement,assesstheircurrentAIinitiatives,andchartaresponsiblepathforAIadoptionandinvestment.

AIforStudentEngagement4

UnpackingStudentEngagement

UnpackingStudentEngagement

AIisfundamentallychanginghowstudents

engagewithlearning.However,student

engagementisacomplexandmulti-layeredfield.TounderstandhowAIisreshapingitthisreport

focusesonsixkeyaspectsofengagement:howstudentsinteractwithfaculty,peers,andcontent,aswellashowtheyengagethroughinstructionaldelivery,appliedlearning,andthebroader

learningenvironment.

Whiletheseaspectsarehighlyinterconnectedeachcarriesitsowndistinctfocusand

characteristics.Together,theyprovidea

structuredlensthroughwhichtoanalyse

innovationinengagement.BymappingemergingusesofAIacrossthesesixareasthisreport

highlightswherepracticesarealreadymaturing,wherenewprioritiesaretakingshape,andwherenovelideasareonlybeginningtosurface.

6

Environment&Inclusivity

1

FacultyInteraction

5

Experiential

&Applied

Learning

2

Peer

Exchange

Student

Engagement

4

InstructionalDelivery

3

Content&Assessment

Figure1.SixKeyAspectsofStudentEngagement

ContextualAspectof

RelationalAspectof

StudentEngagement

StudentEngagement

FacultyInteraction

Studentrelationshipwithfaculty,includingmentorship,guidance,andfeedback.

PeerExchange

Studentscollaborate,exchangeideas,andconstructunderstandingwithoneanother.

Content&Assessment

Studentsinteractwithdisciplinaryknowledgeandstructuredlearningactivities.

InstructionalDelivery

Studentsperceiveandrespondtotheclarity,presence,andstyleofinstructionalapproaches.

Experiential&

AppliedLearning

Studentsconnectlearningtoauthentic,applied,andimmersivecontexts.

Environment&Inclusivity

Studentsfeelsupportedthroughinclusiveandaccessibleenvironments.

AIforStudentEngagement5

TheShiftingLandscapeofStudentEngagementintheAIEra

Whilethesixaspectsofengagementprovideausefulframework,theydonotplayoutinthe

samewayacrosseverylearningcontext.

Engagementlooksverydifferentdependingonthesetting,whetherstudentsareoncampusoronline,andwhetherinteractionshappen

synchronouslyorasynchronously.

Innovationsinstudentengagementarelikewisenotone-size-fits-all.Certainapproachesaremore

effectiveinparticularcontexts.Toaccountforthis,thereportrecognisesthevariedformsofengagementacrossdeliverysettingsand

analysesemerginginnovationsinrelationtothecontextswheretheyarebestsuited.

ThisbreakdownprovidesamorenuancedviewofhowengagementhappensinpracticeandwhereAImayshapeitindistinctways.

Figure2.StudentEngagementAcrossLearningSettings

Asynchronous

GuidingSelf-DirectedLearning

·Reviewinglecturerecordingsandhandouts·Completingpre-classreadingsortasks

·Independentstudy

·Projectworkandassignmentscoordinatedoutsideclass

·Asynchronouspeercollaboration

SustainingMotivation&Continuity

·Watchingrecordedlecturesatownpace·Participatinginforumsordiscussion

boards

·Completingself-pacedquizzesandinteractiveexercises

·Gamifiedprogress:badges,levels,micro-credentials

Synchronous

DeepeningHumanConnection

·Livelectures,seminars,Q&A

·Groupdiscussionandproblem-solving

·Hands-onlabs,workshops,andstudios

·Real-timeQ&Aandfeedbackfromfaculty·Informalpeer&facultyinteractions

FacilitatingActiveDigitalInteraction

·Attendinglivelecturesandwebinars·Breakoutroomgroupactivities

·Virtualmentoringsessions

·Peercollaborationthroughshareddigitalworkspaces

·Virtualnetworkingandcommunityevents

On-Campus

Online

TheShiftingLandscapeofStudentEngagementintheAIEra

PlanningAIadoptioninhighereducationrequiresinstitutionstocarefullyassessthechangesAI

introduces,identifykeyopportunities,andallocateresourcesstrategically.

Atitscore,studentengagementisrelational,

shapedbythevariousrelationshipsthatmakeup

theoverallstudentexperience.Viewedthrough

thislens,AInotonlycreatesanewdirectlinkwithstudentsbutalsoreshapesthreetraditional

relationships:studentswithfaculty,studentswithpeers,andstudentswithcontent.These

interactionsformthefocalpointofthisreport’sanalysis.

TheShiftingLandscapeofStudentEngagementintheAIEra

AIforStudentEngagement6

Figure3.ThreeDimensionsofRethinkingAssessmentintheAgeofAI

RelationsTraditionalInteractionShifttoAI

Student–Faculty

FacultyasPrimarySourceofFeedback&Guidance

·Studentsseekfeedbackfromfacultyonassignments.

·Studentsaskquestionsduringofficehoursorviaemail.

Theme:Facultyprovidevalidation,clarification,andexpertguidance

>

AIasanInstantResponder

·StudentsreceiveinstantfeedbackfromAI.

·StudentsaskAIforinstantresponsestoquestions.

Theme:AIreplacesthewaitforhumanfeedbackwithimmediacy

Student–Peers

PeersasSupport&Perspective-Sharing

·Studentsaskpeersforhelpwithcontentunderstandingand

assignments.

·Studentsexchangeideaswithpeersfordiverseperspectives.

Theme:Peersserveascollaboratorsandco-learners.

>

AIasanAlternativePerspectiveSource

·StudentsaskAIforalternativeperspectives(insteadofpeers).

·StudentsuseAIforsummariesandcontentexplanations.

Theme:AIcanprovidebreadthandmultipleviewpointsbeyondwhattextbooksorpeersmightoffer.

Student–Content

ContentasMainLearningMedium

·Studentsreadtextbooks,attendlectures,andtakenotespassively.

·Studentscompleteassignmentsindependently.

Theme:Contentconsumptionandindependentstudyarecentral.

>

AIasaProductivityTool

·StudentsuseAItosummarise,

transcribe,andtakenotesforlectures.

·StudentsuseAIforanalysisandproblem-solving.

Theme:AIhandlesmechanicaland

cognitiveload,freeingstudentsforhigher-orderthinking(orpotentiallyresultingin

over-reliance).

Withcapabilitiessuchasgeneratinginsightsanddeliveringinstantresponses,AIincreasingly

servesasthe“frontline”ofinteraction.StudentsoftenturnfirsttoAIforfeedback,explanations,andsupport,sometimesbypassingtraditional

humaninteractionswithfacultyandpeers.Thisshifthasmixedeffects:whileAIcanimprove

efficiencyandpersonaliselearning,over-reliance

mayweakencriticalengagementwithcontentanddiminishmeaningfulhumaninteraction.

Theseevolvingdynamicshighlighttheneedforintentionalpedagogicaldesign,leveragingAItostrengthen,ratherthanreplace,core

relationships.Whenintegratedthoughtfully,AIcanenrichengagementacrossalldimensionsofthestudentengagement.

TheShiftingLandscapeofStudentEngagementintheAIEra

AIforStudentEngagement7

Figure4.FourEmergingOpportunitiesinStudentEngagement

2

Broader

Peer-to-PeerExchange

AIcanexpand

collaborativelearning

opportunities,enabling

studentstoexchange

ideasbeyondimmediatepeergroupsandexposingstudentstomorediverseperspectives.

3

Richer

Student–ContentInteraction

AIcanprovideinteractiveandpersonalisedaccesstolearningmaterials,

enrichingtheengagementwithcontent.

4

Responsible

Human–AI

Collaboration

Byguidingstudentsin

effectiveandresponsibleuseofAI,institutionscanfostermeaningfulhuman–AIcollaborationwhile

developinghuman-centredskills.

1

Deeper

Faculty–StudentEngagement

AIcanfreefacultyfromroutinetasks,allowingdeeper,higher-level

interactionsand

personalisedguidance.

DeeperFaculty–StudentEngagement

AIhasthepotentialtoshiftthefaculty–student

relationshipfromoneanchoredintransactionsoflecturing,grading,andfeedbacktoonerootedinmeaningfulconnection.Byoffloadingroutine

taskstoAI,AIallowsfacultytodedicatemore

timetohigher-levelengagement—mentoring,

criticaldialogue,andauthenticrelationalbuilding.

TherealopportunityliesinusingAIasan

intelligencelayerthatrevealspatternsoflearningandengagementonceinvisibletofaculty:

·Collectingengagementdata—capture

signalsfromawiderangeoflearningactivities:

AItutorenquiries,in-classparticipation,andassessmentbehaviours.

·Integratingdatastreams—connecting

fragmentedcourse,assessment,andplatformrecordsintoaholisticlearnerprofile(“digitaltwins”).

·Generatinginsights—usingAItosurfaceactionableinsightssuchasstudents'weakpoints,suggestedteachingmaterials,

personalisedpathways,andtimelyinterventions.

Currently,manyinstitutionsonlycapture

fragmentsofthispicture.Engagementdatais

oftensiloedbycourseorassessment,limitingAI’sabilitytoprovidefacultywithaholisticview.

Figure5.StudentEngagementAcrossLearningSettings

AIasan

Intelligence

LayerBridgingStudent–FacultyEngagement

StudentLearningDataAIAnalysisActionableInsights

TheShiftingLandscapeofStudentEngagementintheAIEra

AIforStudentEngagement8

BroaderPeer-to-PeerExchange

AIcanbroadenthescopeofpeerengagementbyexposingstudentstomorediverseperspectivesandfacilitatingricherdialogue.Insteadofrelyingonlyonlimiteddiscussionself-preparationand

immediateclassmates,AIcanexpandidea

generation,widenthecircleofexchange,andhelpstudentsengagewithdifferencemore

intentionally.

ThefoundationofthisshiftrestsonthreekeyAIcapabilities:

·Providingdiverseviewpoints—AIgeneratesalternativeperspectivesandangles,ensuringstudentsengagewithawiderrangeofideas.

·Matchingacrossdifferences—AIcanconnectstudentswithpeerswhoholdcontrastingpositionsorcomplementaryexpertise,fosteringdebateandbalance.

·Guidingpeerfeedback—AIoffersstructuredpromptsandevaluationcriteria,helping

studentsreviewpeerworkwithmoredepthandfrommultipleangles.

However,AI’sabilitytogenerateinsightscanbeadouble-edgedsword:whileitbroadens

perspectives,itmayalsohinderthedevelopmentofcreativeandcriticalthinkingskills.Students

coulduseAItoolstogeneratecontentwithoutengagingincriticalthinkingoraddingtheirowninsights.This"passivecreativity"risksreducingtheoriginalityanddepthoftheirwork.

Currentpeer-to-peerlearningisstilllargely

boundedbyclassroomcohortsandlacksstrongmechanismsforsurfacingcontrastingordiverseperspectives.EarlyexperimentswithAI,suchaspeermatchingandstructuredpeerfeedback

support,showpromise,butremainexploratory.

Figure6.ThreeKeyComponentsofHowAICanBroadenPeer-to-PeerExchange

ProvidingDiverseViewpoints

AIgeneratesalternativeperspectivesand

angles,ensuringstudentsengagewitha

widerrangeofideas.

Broader

GuidingPeerFeedback

AIoffersstructuredprompts

andevaluationcriteria,helpingstudentsreviewpeerworkwithmoredepthandfrommultipleangles.

MatchingAcrossDifferences

AIcanconnectstudentswithpeerswhoholdcontrastingpositionsorcomplementaryexpertise,fosteringdebateandbalance.

Peer-to-PeerExchange

TheShiftingLandscapeofStudentEngagementintheAIEra

AIforStudentEngagement9

RicherStudent–ContentInteraction

AIisbecominganaturallayerinhowstudentsengagewithlearningmaterialsandassessment.

Institutionsmustadapttothisnewrealityby

intentionallydesigninginteractionssothatAI

enhanceslearningratherthanenablingshortcutstoavoidsuperficiallearning.

Twokeyareasofinnovationareemerging:

1.Interactiveengagementwithmaterials

·EmbeddingAI-driveninteractionpointswithinreadings,videos,andotherresources

transformspassivestudyintoactivelearning.Prompts,explanations,oradaptivequestionsensurestudentsarenotonlyconsuming

contentbutalsocriticallyengagingwithit.

2.AI-integratedassessment

·ByintentionallyembeddingAIintoassessmenttasks,institutionscancreateactivitiesthatarebothAI-resilientandskills-enhancing.StudentsareguidedtouseAI,developingstronger

disciplinaryskillswhilealsobuildingAIliteracy.

AI-IntegratedAssessment

TheNextEraofAssessment,ajointreportbytheDigitalEducationCouncilandPearson,providesthefirstcomprehensivereviewofhoweducatorsworldwideareredesigningassessmentwithAI.

Drawingon101globalcasestudies,thereportidentifies14emergingAI-integratedassessmentdesignmethodologies,whichenableglobaleducatorsinbuildingricherstudent-contentinteractionusingAI.

ResponsibleHuman-AICollaboration

AsstudentsincreasinglyturntoAIastheirfirst

pointofinteractionforstudyandproblem-solving.AccordingtotheDigitalEducationCouncilGlobalAIStudentReport2024,86%ofstudentsuseAIfortheirstudies.Institutionsmusttake

responsibilityforguidingthisemerginghuman–AIrelationship.

ResponsibleengagementwithAIrequiresmorethantechnicaltraining.StudentsmustbeguidedtouseAIeffectivelywhiledeveloping

complementaryhumancapabilitiesthatpreservedepthandoriginalityinlearning.Threeareasareparticularlycritical.

DigitalEducationCouncilGlobalAIStudentReport2024.

AIforStudentEngagement10

Figure7.KeyAIandHuman-CentricSkillsforResponsibleHuman-AICollaboration

TechnicalSkill

Human-CentricSkill

CriticalThinking

Enablestudentsto

evaluateAI-generated

content,verifysources,detectmisinformation,

identifybiases,andapplylogicalreasoningwhenengagingwithAI.

EthicalUseofAI

Human-CentricityandCreativity

UnderstandingAI

Ensurestudents

understandAIethics

principles,recognise

potentialrisks(suchasmisinformationandbias),andimplement

responsibleAIusepractices.

Emphasisethe

importanceofhuman

skillssuchascreativityandemotional

intelligence,ensuringstudentsuseAIinwaysthatcomplementratherthanreplacehuman

capabilities.

Ensurestudentsbuilda

foundational

understandingofhowAIsystemswork,the

principlesofdata

collection,processing,

andinterpretation,andtheimplicationsofAI-

generatedoutput.

Criticalthinking-longacornerstoneof

education,hasbecomeevenmoreessentialin

theageofAI.Itenablesstudentstoverifythe

qualityandaccuracyofAI-generatedoutputandassessrelevancetotheirspecificneeds.WhileAIcangeneratevaluableinsights,theabilityto

evaluate,question,andrefinetheseoutputsiswhatpreventserrors,biases,andsuperficialsolutionsfromtakinghold.

EthicaluseofAI-TheresponsibleuseofAIrequiresstudentstorecognisepotentialrisks

suchasbias,misinformation,anddiscriminatoryoutcomes.DevelopingethicalawarenessallowsstudentstointerrogateAIoutputs,contextualisethemappropriately,andapplythemresponsibly.

Human-centricskillandcreativity-AsAI

increasinglyautomatesroutinetasksand

mediatesinteractions,corehumancapabilities

suchascommunication,empathy,collaboration,andcreativitymustbereinforced.Institutions

shouldintegrateAIinwaysthatenhancethese

skills,ensuringthatstudentscontinuetopracticeandrefinethehumandimensionsoflearning.

AILiteracy

TheDigitalEducationCouncil’sAILiteracyFrameworkdefinesfivedimensionsofAILiteracy:

·UnderstandingAIanddata

·CriticalThinkingandJudgement·EthicalandResponsibleAIUse

·Human-Centricity,EmotionalIntelligence,andCreativity·DomainExpertise

Foreachdimension,theFrameworkoutlinesthreecompetencylevelsofAIliteracywithexamplecompetenciesanddetailedexampleactionsforprogression.

ThePracticalGuidetoAI-Enhanced

StudentEngagement

AIforStudentEngagement12

ThePracticalGuidetoAI-EnhancedStudentEngagement

ThePracticalGuidetoAI-EnhancedStudentEngagement

HighereducationinstitutionsareincreasinglyexploringavarietyofAIapplicationsaimedatenhancingstudentengagement.However,thesectorremainsinanearlyexperimentalphase,withnumerouspilotsandtrialsunderway.

Drawingon106globalcasestudies,thissectionidentifies24emergingmethodologiesforusingAItoenhancestudentengagement,offeringa

rangeofapproachesthatcanguideinstitutionsinoptimisingAIintegrationineducation.

Thesemethodologiesprovideasnapshotof

currentpracticesandexperimentationacross

institutions—rangingfrommature,well-

establishedapplicationstonovelapproachesthatareonlybeginningtobeexploredandstudied.

Eachmethodologyispresentedwithpracticalguidance,includingdescription,implementationcontexts,step-by-stepapplications,real-worldexamples,observedimpact,andkeysuccessindicators.

Figure7.24EmergingMethodologiesforAI-EnhancedStudentEngagement

Peer

Exchange

AI-Supported

Asynchronous

Discussion

Board

AI-GeneratedPromptsforSynchronousDiscussions

AI-Mediated

Peer

Discussions

AI-ModeratedBreakoutRooms

FacultyInteraction

AI-EnhancedTeachingAssistant

AI-Customised

Instructor-Like

Feedback

AI-Enhanced

Faculty

Feedback

PredictiveAnalytics

InstructionalDelivery

AI-Enhanced

Flipped

Classroom

AvatarTeaching

AdaptiveMicro-Learning

AIReal-timeInstructorCoaching

Experiential

andApplied

Learning

EnvironmentandInclusivity

AIfor

Role-Playing

AILive

Captioning,Transcription,

Translation

PhysicalObject-BasedAI

Simulation

AI-EnhancedXR

AIforInclusiveContentCreation

AILearning

Management

Assistant

ContentandAssessment

AI-Generated

Multi-Level

Explanations

AI-Created

Engagingand

RelevantContent

AITutor

AI-SupportedInteractiveReading

AIReal-Time

Feedbackfor

Students

AI-GeneratedMemory

RetentionExercises

AIforStudentEngagement13

FacultyInteraction

AI-EnhancedTeachingAssistant

Description

UsingAIasasupplementarytoolforTeachingAssistantsinvolvesintegratinggenerativeAI(e.g.,ChatGPT)intoTA-ledinstructionandsupportsessions.RatherthangivingstudentsdirectaccesstoAI,TAsuseittoenhanceteachingefficiencyandquality,suchasgeneratingexercises,clarifyingconcepts,

providinghints,debuggingcode,andgivingfeedback.

·SuitableSettings:Online/On-SiteSynchronous

·MaturityLevel:Emerging,withfewinstitutionsexperimenting·ToolRequired:AdedicatedAI-poweredtoolisrequired

PracticalGuide

CaseStudy

TehranPolytechnic&ChatGPT-AugmentedTA(2024)

InaDataStructuresandAlgorithms(DSA)course,teachingassistants(TAs)usedChatGPTasa

supplementarytooltoimproveteachingquality,

Step-by-StepInstruction

1.Preparation-DesignstructuredAIprompts

tailoredtocoursecontent(e.g.,exercises,codesnippets,problemscenarios).

RefineAIoutputstoensurecorrectness,

pedagogicalclarity,andalignmentwithlearningobjectives.

2.DuringTASessions/OfficeHours-UseAItogenerateexampleexercises,hints,and

clarificationsinrealtime:

·VerifyandeditAIoutputsbeforepresentingtostudents.

·Guidestudentsthroughstep-by-step

reasoningusingAI-generatedmaterialsasascaffold.

guidedbystructuredpromptsandhumanverification.

Implementation:

·40undergraduatesweresplitintotwogroups:onewithtraditionalTAsupport,theotherwithTA+ChatGPTassistance.

·TAsusedstructuredprompts(problem,traits,algorithm,real-worldcase,code).ChatGPT-4ogeneratedexercises;ChatGPT-o1handled

advancedreasoning.Alloutputswereverified

3.EvaluationandFeedback-ComparestudentperformancewithandwithoutAI-enhancedTAsupport.AdjustAIpromptsandusagestrategiesbasedonobservedlearninggapsor

misconceptions.

andrefinedbeforeuse.

·AI-assistedproblemsetsandstep-by-stepexplanationsguidedstudentsthrough

complextopics.TAsfacilitatedexercises,feedback,andcomparisonswiththenon-AIgroup.

Impact:PreliminaryresultssuggestthatstudentsintheTA+ChatGPTgroupscored16.5pointshigheronaveragethantheTA-onlygroup(p<0.001).Improvementwasmostsignificantincomplextopics

likerecursionanddynamicprogramming.

ImpactIndicators

·AcademicPerformance:Compareexamscores,assignmentgrades,andtopic-specificmastery(e.g.,recursion,dynamicprogramming)betweenAI-assistedandTA-onlygroups.

·TAEfficiency:TrackTApreparationtimeandabilitytoprovidepersonalisedfeedback.

FacultyInteraction

AIforStudentEngagement14

AI-CustomisedInstructor-LikeFeedback

Description

InthismethodologygenerativeAI(chatbot/assistant)istrainedoncourse-specificinstructormaterials(pastfeedback,modelanswers,rubrics,exemplarcomments)soitcangivestudentsformative,

instructor-styleguidance.TheAIactsasa24/7“checkpoint”thatechoescourseexpectationsandtone.

·SuitableSettings:OnlineAsynchronous

·MaturityLevel:Emerging,withfewinstitutionsexperimenting·ToolRequired:AdedicatedAI-poweredtoolisrequired

PracticalGuide

CaseStudy

UniversityofWashington&AI-enhancedInstructor-StudentFeedbackLoop(2024)

Step-by-StepInstruction

1.Definegoals&policy-decidewhatthebotmayandmaynotdo(draftfeedbackonly,nograding;allowed/forbiddencontent),publishanAI

statementinthesyllabus.

2.Assembletrainingcorpus-collectpastfeedback,rubrics,annotatedstudentdrafts,exemplarcomments,andinstructornotes.

AssociateProfessorKatyPearcedeveloped

course-specificAIchatbotstrainedonyearsofherownassignmentfeedback.

Implementation:

3.Designprompts/behaviour-codifytone,

depth,andscope(e.g.,“giveinstructor-style

formativefeedbackfocusedonthesisclarity,

evidence,andstructure;suggest2nextsteps”).

·Pearcecollectedpastfeedbackacross

multipleyearsofteachingthesame

assignmentandtrainedachatbotto

approximateherfeedbackstyle,tone,andexpectations.

4.Train/configurethebot-fine-tuneoruseRAG(retrieve+generate)togroundanswersinthe

coursecorpus;addguardrails(refuseonpolicy-violatingprompts).

·Studentssubmittedadraftandaskedthechatbotforfeedback.

·ThechatbotprovidedPearce-styleformativeguidanceonthesisclarity,argumentstrength,structure,andevidenceuse.

5.Integrate&launch-embedinLMSorprovideaclearaccesspoint

Studentsiteratedontheirdraftsmultipletimessincethebot“nevergetstired.”

6.Monitor&QA-spot-checkoutputsregularly,samplethreadsforhallucinations/bias,log

problematicresponses.

Impact:Studentswhonormallyavoidedofficehoursoraskingforhelpengagedwiththechatbotfrequently.Studentssubmittedmorepolisheddrafts,reportingthattheirworkhadalreadybeen“checked”beforesubmission.Furtherresearchisneededtotesttheaccuracyofthefeedback.

ImpactIndicators

·FeedbackFidelity:%ofAIrecommendationsthatinstructorsmarkas“useful/accurate”inspotchecks.

AIforStudentEngagement15

PredictiveAnalytics

Description

ThismethodologyusesLMS,SISandadvisingdatatopredictengagementandpersistencerisk,

producingrisktiersforearlyaction.Providescourse-andprogramme-levelinsightswithbuilt-in

outreachworkflows,usinginstitution-specificmodelsdesignedfortransparency,fairnessandregularcalibration.

·SuitableSettings:Online/On-CampusAsynchronous

·MaturityLevel:Mature,implementedbyanumberofinstitutions·ToolRequired:AdedicatedAI-po

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论