版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南腾冲市第八中学2026届高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的离心率为2,且与椭圆有相同的焦点,则该双曲线的渐近线方程为()A. B.C. D.2.不等式的解集为()A. B.C. D.3.等比数列满足,,则()A.11 B.C.9 D.4.定义在区间上的函数满足:对恒成立,其中为的导函数,则A.B.C.D.5.已知向量,,且与互相平行,则的值为()A.-2 B.C. D.6.设数列的前项和为,当时,,,成等差数列,若,且,则的最大值为()A. B.C. D.7.在等差数列{an}中,a1=2,a5=3a3,则a3等于()A.-2 B.0C.3 D.68.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.49.已知是等比数列,则()A.数列是等差数列 B.数列是等比数列C.数列是等差数列 D.数列是等比数列10.抛物线的准线方程为()A B.C. D.11.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.1112.抛物线上有两个点,焦点,已知,则线段的中点到轴的距离是()A.1 B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线过抛物线的焦点,且与的对称轴垂直,与交于,两点,,为的准线上一点,则的面积为________14.抛物线的准线方程是,则实数___________.15.如图,PD垂直于正方形ABCD所在平面,AB=2,E为PB的中点,cos〈,〉=,若以DA,DC,DP所在直线分别为x,y,z轴建立空间直角坐标系,则点E的坐标为________16.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知是抛物线上的焦点,是抛物线上的一个动点,若动点满足,则的轨迹方程.18.(12分)已知数列满足,记数列的前项和为,且,(1)求数列的通项公式;(2)若,求数列的前100项和19.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.20.(12分)解答下列两个小题:(1)双曲线:离心率为,且点在双曲线上,求的方程;(2)双曲线实轴长为2,且双曲线与椭圆的焦点相同,求双曲线的标准方程21.(12分)若存在实常数k和b,使得函数和对其公共定义域上的任意实数x都满足:和恒成立,则称此直线y=kx+b为和的“隔离直线”.已知函数,.(1)证明函数在内单调递增;(2)证明和之间存在“隔离直线”,且b的最小值为-4.22.(10分)唐代诗人李颀的诗《古从军行》开头两句说:“白日登上望烽火,黄昏饮马傍交河,”诗中隐含着一个有趣的“将军饮马”问题,这是一个数学问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使得总路程最短?在平面直角坐标系中,将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即为回到军营.军营所在区域可表示为.(1)求“将军饮马”的最短总路程;(2)因军情紧急,将军来不及饮马,直接从A点沿倾斜角为45°的直线路径火速回营,已知回营路径与军营边界的交点为M,N,军营中心与M,N连线的斜率分别为,,试求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求出焦点,则可得出,即可求出渐近线方程.【详解】由椭圆可得焦点为,则设双曲线方程为,可得,则离心率,解得,则,所以渐近线方程为.故选:B.2、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.3、B【解析】由已知结合等比数列的性质即可求解.【详解】由数列是等比数列,得:,故选:B4、D【解析】分别构造函数,,,,利用导数研究其单调性即可得出【详解】令,,,,恒成立,,,,函数在上单调递增,,令,,,,恒成立,,函数在上单调递减,,.综上可得:,故选:D【点睛】函数的性质是高考的重点内容,本题考查的是利用函数的单调性比较大小的问题,通过题目中给定的不等式,分别构造两个不同的函数求导判出单调性从而比较函数值得大小关系.在讨论函数的性质时,必须坚持定义域优先的原则.对于函数实际应用问题,注意挖掘隐含在实际中的条件,避免忽略实际意义对定义域的影响5、A【解析】应用空间向量坐标的线性运算求、的坐标,根据空间向量平行有,即可求的值.【详解】由题设,,,∵与互相平行,∴且,则,可得.故选:A6、A【解析】根据等差中项写出式子,由递推式及求和公式写出和,进而得出结果.【详解】解:由,,成等差数列,可得,则,,,可得数列中,每隔两项求和是首项为,公差为的等差数列.则,,则的最大值可能为.由,,可得.因为,,,即,所以,则,当且仅当时,,符合题意,故的最大值为.故选:A.【点睛】本题考查等差数列的性质和递推式的应用,考查分析问题能力,属于难题.7、A【解析】利用已知条件求得,由此求得.【详解】a1=2,a5=3a3,得a1+4d=3(a1+2d),即d=-a1=-2,所以a3=a1+2d=-2.故选:A.8、A【解析】根据等比数列的通项得:,从而可求出.【详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.9、B【解析】取,可判断AC选项;利用等比数列的定义可判断B选项;取可判断D选项.【详解】若,则、无意义,A错C错;设等比数列的公比为,则,(常数),故数列是等比数列,B对;取,则,数列为等比数列,因为,,,且,所以,数列不是等比数列,D错.故选:B.10、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.11、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.12、B【解析】利用抛物线的定义,将抛物线上的点到焦点的距离转化为点到准线的距离,即可求出线段中点的横坐标,即得到答案.【详解】由已知可得抛物线的准线方程为,设点的坐标分别为和,由抛物线的定义得,即,线段中点的横坐标为,故线段的中点到轴的距离是.故选:.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设出抛物线方程,写出准线方程和焦点坐标,利用得到抛物线方程,再利用三角形的面积公式进行求解.【详解】设抛物线的方程为,则焦点为,准线方程为,由题意,得,,,所以,解得,所以.故答案为:.14、##【解析】将抛物线方程化为标准方程,根据其准线方程即可求得实数.【详解】抛物线化为标准方程:,其准线方程是,而所以,即,故答案为:15、(1,1,1)【解析】设PD=a,则D(0,0,0),A(2,0,0),B(2,2,0),P(0,0,a),E(1,1,),∴=(0,0,a),=(-1,1,)由cos〈,〉=,∴=a·,∴a=2.∴E的坐标为(1,1,1)16、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解析】由抛物线的方程可得到焦点坐标,设,写出向量的坐标,由向量间的关系得到,将点代入物线即可得到轨迹方程.【详解】由抛物线可得:设①在上,将①代入可得:,即.【点睛】求轨迹方程,一般是求谁设谁的坐标然后根据题目等式直接求解即可,而对于直线与曲线的综合问题要先分析题意转化为等式,例如,可以转化为向量坐标进行运算也可以转化为斜率来理解,然后借助韦达定理求解即可运算此类题计算一定要仔细.18、(1)(2)【解析】(1)由题意得出,然后与原式结合,两式相减并化简求出,最后根据等差数列的定义求得答案;(2)结合(1),分别讨论,和三种情况,分别求出,进而求出.【小问1详解】因为,所以,两式相减得,所以又,所以数列是首项为,公差为2的等差数列,所以.【小问2详解】由得,当时,,当时,,当时,,所以.19、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:20、(1);(2).【解析】(1)由可得,再将点代入方程,联立解出答案,可得答案.(2)先求出椭圆的焦点,则双曲线的焦点在轴上,由条件可得,且,从而得出答案.详解】(1)由,得,即,又,即,双曲线的方程即为,点坐标代入得,解得所以,双曲线的方程为(2)椭圆的焦点为,设双曲线的方程为,所以,且,所以,所以,双曲线的方程为21、(1)见解析(2)见解析【解析】(1)由导数得出在上的单调性;(2)设和之间的隔离直线为y=kx+b,由题设条件得出对任意恒成立,再由二次函数的性质求解即可.【小问1详解】,当时,在上单调递增在内单调递增【小问2详解】设和之间的隔离直线为y=kx+b则对任意恒成立,即对任意恒成立由对任意恒成立,得当时,则有符合题意;当时,则有对任意恒成立的对称轴为又的对称轴为即故和之间存在“隔离直线”,且b的最小值为-4.【点睛】关键点睛:在解决问题一时,求了一阶导得不了函数的单调性,再次求导得,进而得出在恒成立,得在上的单调性.22、(1);(2).【解析】(1)根据题意作出图形,然后求出关于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年哈尔滨市天元学校招聘临聘教师备考题库及参考答案详解一套
- 2026年中国药科大学费宇涵课题组博士后招聘备考题库及一套答案详解
- 2026年关于招聘派遣丽水市旅投酒店管理有限公司(丽水文旅雷迪森广场酒店)工作人员的招聘备考题库及答案详解一套
- 2026年中国建筑一局(集团)有限公司华北公司招聘备考题库附答案详解
- 2026年北自所(北京)科技发展股份有限公司招聘备考题库有答案详解
- 2026年中国人民财产保险公司面向全省招聘理赔岗的备考题库及答案详解1套
- 2026年上海市保安押运有限公司招聘备考题库及答案详解一套
- 2026年中铜东南铜业有限公司招聘备考题库及1套参考答案详解
- 2026年云南省医药天马有限公司招聘7人备考题库含答案详解
- 2026年开远市教体系统事业单位校园公开招聘23人备考题库及一套参考答案详解
- 6.1.3化学反应速率与反应限度(第3课时 化学反应的限度) 课件 高中化学新苏教版必修第二册(2022-2023学年)
- 2026届北京市清华大学附中数学高二上期末调研模拟试题含解析
- 2026年马年德育实践作业(图文版)
- 医院实习生安全培训课课件
- 四川省成都市武侯区西川中学2024-2025学年八上期末数学试卷(解析版)
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 2024人教版七年级数学上册全册教案
- GB/T 10067.47-2014电热装置基本技术条件第47部分:真空热处理和钎焊炉
- 状语从句精讲课件
- JJG544-2011《压力控制器检定规程》规程试题试题
- 施工现场车辆进出冲洗记录
评论
0/150
提交评论