版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省十校联盟选考学考2026届高二数学第一学期期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数在处取得极值,则()A. B.C. D.2.已知定义在R上的函数满足,且有,则的解集为()A. B.C. D.3.已知椭圆与直线交于A,B两点,点为线段的中点,则a的值为()A. B.3C. D.4.为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体 B.每个学生是个体C.样本容量是100 D.抽取的100名学生是样本5.设函数,则曲线在点处的切线方程为()A. B.C. D.6.已知双曲线的左焦点为,,为双曲线的左、右顶点,渐近线上的一点满足,且,则双曲线的离心率为()A. B.C. D.7.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.8.函数的最小值为()A. B.1C.2 D.e9.函数在上的最大值是A. B.C. D.10.“”是“曲线为焦点在轴上的椭圆”的A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.给出命题:若函数是幂函数,则函数的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是()A.3 B.2C.1 D.012.已知函数的定义域为,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.14.若关于的不等式恒成立,则实数的取值范围是______.15.已知函数(1)求函数的单调区间;(2)设上存在极大值M,证明:.16.已知圆,直线与圆C交于A,B两点,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的导函数为,且满足(1)求及的值;(2)求在点处的切线方程18.(12分)已知抛物线上一点到焦点的距离与到轴的距离相等.(1)求抛物线的方程;(2)若直线与抛物线交于A,两点,且满足(为坐标原点),证明:直线与轴的交点为定点.19.(12分)已知抛物线焦点是,斜率为的直线l经过F且与抛物线相交于A、B两点(1)求该抛物线的标准方程和准线方程;(2)求线段AB的长20.(12分)已知等差数列满足,,的前项和为.(1)求及;(2)令,求数列的前项和.21.(12分)已知数列的前n项和(1)证明是等比数列,并求的通项公式;(2)在和之间插入n个数,使这个数组成一个公差为的等差数列,求数列的前n项和22.(10分)如图,在四棱锥中P﹣ABCD中,底面ABCD是边长为2的正方形,BC⊥平面PAB,PA⊥AB,PA=2(1)求证:PA⊥平面ABCD;(2)求平面PAD与平面PBC所成角的余弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据极值点处导函数为零可求解.【详解】因为,则,由题意可知.经检验满足题意故选:B2、A【解析】构造,应用导数及已知条件判断的单调性,而题设不等式等价于即可得解.【详解】设,则,∴R上单调递增.又,则.∵等价于,即,∴,即所求不等式的解集为.故选:A.3、A【解析】先联立直线和椭圆的方程,结合中点公式及点可求a的值.【详解】设,联立,得,,因为点为线段的中点,所以,即,解得,因为,所以.故选:A.4、C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.5、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A6、C【解析】由双曲线的渐近线方程和两点的距离公式,求得点的坐标和,在中,利用余弦定理,求得的关系式,再由离心率公式,计算即可求解.【详解】由题意,双曲线,可得,设在渐近线上,且点在第一象限内,由,解得,即点,所以,在中,由余弦定理可得,可得,即,所以双曲线离心率为.故选:C.【点睛】求解椭圆或双曲线的离心率的三种方法:1、定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;2、齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.7、D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.8、B【解析】先化简为,然后通过换元,再研究外层函数单调性,进而求得的最小值【详解】化简可得:令,故的最小值即为的最小值,是关于的单调递增函数,易知对求导可得:当时,单调递减;当时,单调递增则有:故选:B9、D【解析】求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可,结合函数的单调性求出的最大值即可【详解】函数的导数令可得,可得上单调递增,在单调递减,函数在上的最大值是故选D【点睛】本题考查了函数的单调性、最值问题,是一道中档题10、C【解析】∵“”⇒“方程表示焦点在轴上的椭圆”,“方程表示焦点在轴上的椭圆”⇒“”,∴“”是“方程表示焦点在轴上的椭圆”的充要条件,故选C.11、C【解析】若函数是幂函数,则函数的图象不过第四象限,原命题是真命题,则其逆否命题也是真命题;其逆命题为:若函数的图象不过第四象限,则函数是幂函数是假命题,所以原命题的否命题也是假命题.故它的逆命题、否命题、逆否命题三个命题中,真命题有一个.选C12、D【解析】利用导数的定义可求得的值.【详解】由导数的定义可得.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.14、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.15、(1)在单调递增,单调递减;(2)详见解析.【解析】(1)求得,利用和即可求得函数的单调性区间;(2)求得函数的解析式,求,对的情况进行分类讨论得到函数有极大值的情形,再结合极大值点的定义进行替换、即可求解.【详解】(1)由题意,函数,则,当时,令,所以函数单调递增;当时,令,即,解得或,令,即,解得,所以函数在区间上单调递增,在区间中单调递减,当时,令,即,解得或,令,即,解得,所以函数在单调递增,在单调递减.(2)由函数,则,令,可得令,解得,当时.,函数在单调递增,此时,所以,函数在上单调递增,此时不存在极大值,当时,令解得,令,解得,所以上单调递减,在上单调递增,因为在上存在极大值,所以,解得,因为,易证明,存在时,,存在使得,当在区间上单调递增,在区间单调递减,所以当时,函数取得极大值,即,,由,所以【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题16、-2【解析】将圆的一般方程化为标准方程,结合垂径定理和勾股定理表示出圆心到弦的距离,再由点到直线的距离公式表示出圆心到弦的距离,解方程即可求得的值.【详解】解:将圆的方程化为标准方程可得,圆心为,半径圆C与直线相交于、两点,且,由垂径定理和勾股定理得圆心到直线的距离为,由点到直线距离公式得,所以,解得,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2).【解析】(1)由题可得,进而可得,然后可得,即得;(2)由题可求,,再利用点斜式即得.【小问1详解】∵,∴,,∴,,∴.【小问2详解】∵,,∴,,∴在点处的切线方程为,即.18、(1);(2)证明见解析.【解析】(1)利用抛物线点,n)到焦点的距离等于到x轴的距离求出,从而得到抛物线的标准方程(2)联立直线与抛物线方程,通过韦达定理求出直线方程,然后由,即可求解【小问1详解】由题意可得,故抛物线方程为;【小问2详解】设,,,,直线的方程为,联立方程中,消去得,,则,又,解得或(舍去),直线方程为,直线过定点19、(1)抛物线的方程为,其准线方程为,(2)【解析】(1)根据焦点可求出的值,从而求出抛物线的方程,即可得到准线方程;(2)设,,,,将直线的方程与抛物线方程联立消去,整理得,得到根与系数的关系,由抛物线的定义可知,代入即可求出所求【小问1详解】解:由焦点,得,解得所以抛物线的方程为,其准线方程为,【小问2详解】解:设,,,直线的方程为.与抛物线方程联立,得,消去,整理得,由抛物线定义可知,所以线段的长为20、(1),;(2).【解析】(1)根据等差数列的通项公式及已知条件,,解方程组可得,,进而可得等差数列的通项公式,再利用等差数列的前项和公式可得;(2)将数列的通项公式代入可得的通项公式,利用错位相减法求和可得结果.【详解】(1)设等差数列的首项为,公差为,由于,,所以,,解得,,所以,;(2)因为,所以,故,,两式相减得,所以.【点睛】本题的核心是考查错位相减求和.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{bn}的公比,然后作差求解.21、(1)证明见解析,(2)【解析】(1)利用及已知即可得到证明,从而求得通项公式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安庆医药高等专科学校单招综合素质考试题库及答案1套
- 2026年涉外会议保密员技能提升试题及完整答案1套
- 2026年新疆科技职业技术学院单招职业技能测试模拟测试卷及答案1套
- 2026年江西省抚州市单招职业倾向性测试模拟测试卷附答案
- 2026年心理账户期末测试题及参考答案
- 2026年广东松山职业技术学院单招职业技能考试模拟测试卷及答案1套
- 2026年山西铁道单招试题附答案
- 2026上海浦东新区妇女联合会文员公开招聘2人笔试备考题库及答案解析
- 2026四川自贡医元健康管理有限责任公司招聘工作人员11人笔试备考题库及答案解析
- 2026贵州安顺长水实验学校招聘24人笔试备考题库及答案解析
- 6.1.3化学反应速率与反应限度(第3课时 化学反应的限度) 课件 高中化学新苏教版必修第二册(2022-2023学年)
- 北京市西城区第8中学2026届生物高二上期末学业质量监测模拟试题含解析
- 2026年辽宁轻工职业学院单招综合素质考试参考题库带答案解析
- 2026届北京市清华大学附中数学高二上期末调研模拟试题含解析
- 2026年马年德育实践作业(图文版)
- 医院实习生安全培训课课件
- 四川省成都市武侯区西川中学2024-2025学年八上期末数学试卷(解析版)
- 2026年《必背60题》抖音本地生活BD经理高频面试题包含详细解答
- 土方回填工程质量控制施工方案
- 2025年湖南城建职业技术学院单招职业适应性测试题库附答案
- 2026贵州大数据产业集团有限公司第一次社会招聘考试题库新版
评论
0/150
提交评论