版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届陕西省富平县高一数学第一学期期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若关于的方程有且仅有一个实根,则实数的值为()A3或-1 B.3C.3或-2 D.-12.函数的定义域是A. B.C. D.3.设,则()A. B.C. D.4.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是5.已知,,,则的大小关系为()A. B.C. D.6.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.17.设一个半径为r的球的球心为空间直角坐标系的原点O,球面上有两个点A,B,其坐标分别为(1,2,2),(2,-2,1),则()A. B.C. D.8.已知等边的边长为2,为内(包括三条边上)一点,则的最大值是A.2 B.C.0 D.9.命题“且”是命题“”的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要10.设集合,,若对于函数,其定义域为,值域为,则这个函数的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数是幂函数,且在上是减函数,则实数__________.12.已知是定义在上的奇函数,当时,,则时,__________13.已知函数是偶函数,它在上是减函数,若满足,则的取值范围是___________.14.的值为__________15.已知函数,若a、b、c互不相等,且,则abc的取值范围是______16.函数的最小值为_________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于四个正数,如果,那么称是的“下位序对”(1)对于,试求的“下位序对”;(2)设均为正数,且是的“下位序对”,试判断之间的大小关系.18.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围19.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围20.已知二次函数,若不等式的解集为,且方程有两个相等的实数根.(1)求的解析式;(2)若,成立,求实数m的取值范围.21.有三个条件:①;②且;③最小值为2且.从这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数满足_________,.(1)求的解析式;(2)设函数,求的值域.注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】令,根据定义,可得的奇偶性,根据题意,可得,可求得值,分析讨论,即可得答案.【详解】令,则,所以为偶函数,图象关于y轴对称,因为原方程仅有一个实根,所以有且仅有一个根,即,所以,解得或-1,当时,,,,不满足仅有一个实数根,故舍去,当时,,当时,由复合函数的单调性知是增函数,所以,当时,,所以,所以仅有,满足题意,综上:.故选:B2、D【解析】由,求得的取值集合得答案详解】解:由,得,函数定义域是故选:D【点睛】本题考查函数的定义域及其求法,关键是明确正切函数的定义域,属于基础题3、C【解析】先由补集的概念得到,再由并集的概念得到结果即可【详解】根据题意得,则故选:C4、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.5、A【解析】由题,,,所以的大小关系为.故选A.点晴:本题考查的是对数式的大小比较.解决本题的关键是利用对数函数的单调性比较大小,当对数函数的底数大于0小于1时,对数函数是单调递减的,当底数大于1时,对数函数是单调递增的;另外由于对数函数过点(1,0),所以还经常借助特殊值0,1,2等比较大小.6、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B7、C【解析】由已知求得球的半径,再由空间中两点间的距离公式求得|AB|,则答案可求【详解】∵由已知可得r,而|AB|,∴|AB|r故选C【点睛】本题考查空间中两点间距离公式的应用,是基础题8、A【解析】建立如图所示的平面直角坐标系,则,设点P的坐标为,则故令,则t表示内(包括三条边上)上的一点与点间的距离的平方.结合图形可得当点与点B或C重合时t可取得最大值,且最大值为,故的最大值为.选A点睛:通过建立坐标系,将问题转化为向量的坐标运算可使得本题的解答代数化,在得到向量数量积的表达式后,根据表达式的特征再利用数形结合的思路求解是解题的关键,借助图形的直观性可容易得到答案9、A【解析】将化为,求出x、y值,根据充要条件的定义即可得出结果.【详解】由,可得,解得x=1且y=2,所以“x=1且y=2”是“”的充要条件.故选:A.10、D【解析】利用函数的概念逐一判断即可.【详解】对于A,函数的定义域为,不满足题意,故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【点睛】本题考查了函数的概念以及函数的定义域、值域,考查了基本知识的掌握情况,理解函数的概念是解题的关键,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】根据函数为幂函数求参数m,讨论所求得的m判断函数是否在上是减函数,即可确定m值.【详解】由题设,,即,解得或,当时,,此时函数在上递增,不合题意;当时,,此时函数在上递减,符合题设.综上,.故答案为:212、【解析】∵函数f(x)为奇函数∴f(-x)=-f(x)∵当x>0时,f(x)=log2x∴当x<0时,f(x)=-f(-x)=-log2(-x).故答案为.点睛:本题根据函数为奇函数可推断出f(-x)=-f(x)进而根据x>0时函数的解析式即可求得x<0时,函数的解析式13、【解析】由偶函数的性质可得,再由函数在上是减函数,可得,从而可求出的取值范围【详解】因为函数是偶函数,所以可化为,因为函数在上是减函数,所以,所以或,解得或,所以的取值范围是,故答案为:14、【解析】根据特殊角的三角函数值与对数的运算性质计算可得;【详解】解:故答案为:15、【解析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【点睛】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题16、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据新定义,代入计算判断即可;(2)根据新定义得到ad<bc,再利用不等式的性质,即可判断.【详解】(1),的“下位序对”是.(2)是的“下位序对”,,均为正数,,即,,同理可得,综上所述,【点睛】关键点点睛:对于本题关键理解,如果,那么称是的“下位序对”这一新定义,理解此定义后,利用不等式性质求解即可.18、(1)见解析.(2)[2-,1)∪(1,2+]【解析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.19、(1);(2).【解析】(1)采用换元,令,当时,把函数转化为二次函数,即可求出答案.(2)采用换元,令,即在恒成立,即可求出答案.【小问1详解】函数,令,当时,,的值域为.【小问2详解】,恒成立,只需:在恒成立;令:则得.20、(1);(2).【解析】(1)根据的解集为,可得1,2即为方程的两根,根据韦达定理,可得b,c的表达式,根据有两个相等的实数根.可得该方程,即可求得a的值,即可得答案;(2)由题意得使成立,则只需,利用基本不等式,即可求得答案.【详解】(1)因为的解集为,所以1,2即为方程的两根,由韦达定理得,且,解得,,又方程有两个相等实数根,所以,即,,解得,所以,所以;(2)由(1)可得,,所以,则,,又,当且仅当,即x=2时等号成立,所以,使成立,等价为成立,所以.【点睛】已知解集求一元二次不等式参数时,关键是灵活应用韦达定理,进行求解,处理存在性问题时,需要,若处理恒成立问题时,需要,需认真区分问题,再进行解答,属中档题.21、(1);(2).【解析】(1)若选择①,设代入,根据恒等式的思想可求得,得到的解析式;若选择②,设由,得,由,得出二次函数的对称轴即,再代入,解之可得的解析式;若选择③,设由,得,又恒成立,又,得出二次函数的对称轴解之即可;(2)由(1)知,根据二次函数的对称轴分析出上的单调性,可求得的值域.【详解】解:(1)若选择①,设则又因为即解得,又,所以解得,所以的解析式为;若选择②,设由,得,又,所以二次函数的对称轴即,又,所以解得所以的解析式为;若选择③,设由,得,又恒成立,又,所以二次函数的对称轴即,且解得所以的解析式为;(2)由(1)知,所以,因为对称轴所以在上单调递减,在上单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保险合规考试试题及答案
- 大数据驱动的职业性放射病风险预测研究-1
- 大数据赋能精准医学人才培养模式
- 大数据在慢病健康促进中的应用
- 导演考试题及答案
- 多维度分层在个体化手术中的应用
- 2025年大学大二(商务策划)方案撰写综合测试题及答案
- 2025年高职旅游服务与管理(导游词撰写)试题及答案
- 2025年中职(工业机器人技术应用)机器人传感器应用试题及答案
- 2025年高职(环境监测技术)环境工程原理实务试题及答案
- 吴江三小英语题目及答案
- 2025年事业单位笔试-河北-河北药学(医疗招聘)历年参考题库含答案解析(5卷套题【单选100题】)
- 集团债权诉讼管理办法
- 钢结构施工进度计划及措施
- 智慧健康养老服务与管理专业教学标准(高等职业教育专科)2025修订
- 珠宝首饰售后服务与保修合同
- 2025年广东省惠州市惠城区中考一模英语试题(含答案无听力原文及音频)
- 煤矿皮带输送机跑偏原因和处理方法
- 征兵体检超声诊断
- 创伤后应激障碍的心理护理
- 医疗项目年度总结模板
评论
0/150
提交评论