版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省肇东第一中学高二数学第一学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,,,,则此三角形()A.无解 B.一解C.两解 D.解的个数不确定2.双曲线的渐近线方程为()A. B.C. D.3.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆4.双曲线:的一条渐近线与直线垂直,则它的离心率为()A. B.C. D.5.椭圆的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则∠F1PF2的余弦值为A. B.C. D.6.执行如图所示的流程图,则输出k的值为()A.3 B.4C.5 D.27.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.168.命题“若,则”的否命题是()A.若,则 B.若,则C.若,则 D.若,则9.在四棱锥P-ABCD中,底面ABCD,,,点E为PA的中点,,,,则点B到平面PCD的距离为()A. B.C. D.10.已知圆M与直线与都相切,且圆心在上,则圆M的方程为()A. B.C. D.11.已知椭圆的上下顶点分别为,一束光线从椭圆左焦点射出,经过反射后与椭圆交于点,则直线的斜率为()A. B.C. D.12.已知,,,执行如图所示的程序框图,输出的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.2021年7月,某市发生德尔塔新冠肺炎疫情,市卫健委决定在全市设置多个核酸检测点对全市人员进行核酸检测.已知组建一个小型核酸检测点需要男医生1名,女医生3名,每小时可做200人次的核酸检测,组建一个大型核酸检测点需要男医生3名,女医生3名.每小时可做300人次的核酸检测.某三甲医院决定派出男医生10名、女医生18名去做核酸检测工作,则这28名医生需要组建________个小型核酸检测点和________个大型核酸检测点,才能更高效的完成本次核酸检测工作.14.已知函数,则曲线在点处的切线方程为______.15.等差数列前项之和为,若,则________16.已知点,,其中,若线段的中点坐标为,则直线的方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,数列的前项和为,求不等式的解集.18.(12分)已知椭圆的左焦点为,上顶点为,直线与椭圆的另一个交点为A(1)求点A的坐标;(2)过点且斜率为的直线与椭圆交于,两点(均与A,不重合),过点与轴垂直的直线分别交直线,于点,,证明:点,关于轴对称19.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马中,侧棱底面,且,过棱的中点,作交于点,连接(1)证明:.试判断四面体是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)记阳马的体积为,四面体的体积为,求的值;(3)若面与面所成二面角的大小为,求的值20.(12分)已知函数,求函数在上的最大值与最小值.21.(12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,出现故障时需1名工人进行维修,且每台机器是否出现故障是相互独立的,每台机器出现故障的概率为(1)若出现故障的机器台数为X,求X的分布列;(2)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障时能及时维修,都产生5万元的利润,否则将不产生利润.若该厂在雇佣维修工人时,要保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%,雇佣几名工人使该厂每月获利最大?22.(10分)设集合(1)若,求;(2)设,若是成立的必要不充分条件,求实数a的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用正弦定理求出的值,再根据所求值及a与b的大小关系即可判断作答.【详解】在中,,,,由正弦定理得,而为锐角,且,则或,所以有两解故选:C2、B【解析】把双曲线的标准方程中的1换成0,可得其渐近线的方程【详解】双曲线的渐近线方程是,即,故选B【点睛】本题考查了双曲线的标准方程与简单的几何性质等知识,属于基础题3、A【解析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A4、A【解析】先利用直线的斜率判定一条渐近线与直线垂直,求出,再利用双曲线的离心率公式和进行求解.【详解】因为直线的斜率为,所以双曲线的一条渐近线与直线垂直,所以,即,则双曲线的离心率.故选:A.卷II(非选择题5、B【解析】根据题意,椭圆的标准方程为,其中则,则有|F1F2|=2,若a=3,则|PF1|+|PF2|=2a=6,又由|PF1|=4,则|PF2|=6-|PF1|=2,则cos∠F1PF2==.故选B6、B【解析】根据程序框图运行程序,直到满足,输出结果即可.【详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环;,,满足,输出结果:故选:B.7、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.8、B【解析】根据原命题的否命题是条件结论都要否定【详解】解:因为原命题的否命题是条件结论都要否定所以命题“若,则”的否命题是若,则;故选:B9、D【解析】为中点,连接,易得为平行四边形,进而可知B到平面PCD的距离即为到平面PCD的距离,再由线面垂直的性质确定线线垂直,在直角三角形中应用勾股定理求相关线段长,即可得△为直角三角形,最后应用等体积法求点面距即可.【详解】若为中点,连接,又E为PA的中点,所以,,又,,则且,所以为平行四边形,即,又面,面,所以面,故B到平面PCD的距离,即为到平面PCD的距离,由底面ABCD,面ABCD,即,,,又,即,,则面,面,即,而,,,,易知:,在△中;在△中;在△中;综上,,故,又,则.所以B到平面PCD的距离为.故选:D10、A【解析】由题可设,结合条件可得,即求.【详解】∵圆心在上,∴可设圆心,又圆M与直线与都相切,∴,解得,∴,即圆的半径为1,圆M的方程为.故选:A.11、B【解析】根据给定条件借助椭圆的光学性质求出直线AD的方程,进而求出点D的坐标计算作答.【详解】依题意,椭圆的上顶点,下顶点,左焦点,右焦点,由椭圆的光学性质知,反射光线AD必过右焦点,于是得直线AD的方程为:,由得点,则有,所以直线的斜率为.故选:B12、B【解析】计算出、的值,执行程序框图中的程序,进而可得出输出结果.【详解】,,则,执行如图所示的程序,,成立,则,不成立,输出的值为.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.4②.2【解析】根据题意建立不等式组,进而作出可行域,最后通过数形结合求得答案.【详解】设需要组建个小型核酸检测点和个大型核酸检测点,则每小时做核酸检测的最高人次,作出可行域如图中阴影部分所示,由图可见当直线过点A时,z取得最大值,由得恰为整数点,所以组建4个小型核酸检测点和2个大型核酸检测点,才能更高效的完成本次核酸检测工作.故答案为:4;2.14、【解析】先求函数的导数,再利用导数的几何意义求函数在处的切线方程.【详解】,,,所以曲线在点处的切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,重点考查计算能力,属于基础题型.15、【解析】直接利用等差数列前项和公式和等差数列的性质求解即可.【详解】由已知条件得,故答案为:.16、【解析】根据中点坐标公式求出,再根据直线的两点式方程即可得出答案.【详解】解:由,,得线段的中点坐标为,所以,解得,所以直线的方程为,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)利用与的关系求解即可;(2)首先利用裂项求和得到,从而得到,再解不等式即可.【小问1详解】令,则,当时,,当时,也符合上式,即数列的通项公式为.【小问2详解】由(1)得,则,所以故可化为:,故,故不等式的解集为.18、(1)(2)证明见解析【解析】(1)先求出直线的方程,联立直线与椭圆,求出A点坐标;(2)设出直线方程,联立椭圆方程,用韦达定理得到两根之和,两根之积,求出两点的纵坐标,证明出,即可证明关于轴对称.【小问1详解】由题意得,,所以直线方程为,与椭圆方程联立得解得或,当时,,所以【小问2详解】设,,的方程为,联立消去得,则,直线的方程为,设,则,直线的方程为,设,则,因为,即,所以点,关于轴对称19、(1)证明见解析,是鳖臑,四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB(2)4(3)【解析】(1)由直线与直线,直线与平面的垂直的转化证明得出PB⊥EF,DE∩FE=E,所以PB⊥平面DEF,即可判断DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,确定直角即可;(2)PD是阳马P−ABCD的高,DE是鳖臑D−BCE的高,BC⊥CE,,由此能求出的值(3)根据公理2得出DG是平面DEF与平面ACBD的交线.利用直线与平面的垂直判断出DG⊥DF,DG⊥DB,根据平面角的定义得出∠BDF是面DEF与面ABCD所成二面角的平面角,转化到直角三角形求解即可【小问1详解】因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.而DE⊂平面PDC,所以BC⊥DE又因为PD=CD,点E是PC的中点,所以DE⊥PC而PC∩CB=C,所以DE⊥平面PBC.而PB⊂平面PBC,所以PB⊥DE又PB⊥EF,DE∩FE=E,所以PB⊥平面DEF由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体BDEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB;【小问2详解】由已知,PD是阳马P−ABCD的高,∴,由(Ⅰ)知,,在Rt△PDC中,∵PD=CD,点E是PC的中点,∴,∴【小问3详解】如图所示,在面BPC内,延长BC与FE交于点G,则DG是平面DEF与平面ABCD的交线由(1)知,PB⊥平面DEF,所以PB⊥DG又因为PD⊥底面ABCD,所以PD⊥DG.而PD∩PB=P,所以DG⊥平面PBD所以DG⊥DF,DG⊥DB故∠BDF是面DEF与面ABCD所成二面角的平面角,设PD=DC=1,BC=λ,有,在Rt△PDB中,由DF⊥PB,得,则,解得所以故当面DEF与面ABCD所成二面角的大小为时,20、最大值为,最小值为【解析】利用导数可求得的单调性,进而可得极值,比较极值和端点值的大小即可求解.【详解】由可得:,则当时,;当时,;所以在上单调递减,在上单调递增,,又因为,,所以,综上所述:函数在上的最大值为,最小值为.21、(1)答案见解析(2)雇佣3名【解析】(1)设出现故障的机器台数为X,由题意知,即可由二项分布求解;(2)设该厂雇佣n名工人,n可取0、1、2、3、4,先求出保证在任何时刻多台机器同时出现故障能及时进行维修的概率不小于90%需要至少3人,再分别计算3人,4人时的获利即可得解.【小问1详解】每台机器运行是否出现故障看作一次实验,在一次试验中,机器出现故障的概率为,4台机器相当于4次独立试验设出现故障的机器台数为X,则,,,,,,则X的分布列为:X01234P【小问2详解】设该厂雇佣n名工人,n可取0、1、2、3、4,设“在任何时刻多台机器同时出现故障能及时进行维修”的概率为,则:n01234P1∵,∴至少要3名工人,才能保证在任何时刻多台机器同时出现故障时能及时进行维修的概率不小于90%当该厂雇佣3名工人时,设该厂获利为Y万元,则Y的所有可能取值为17,12,,,∴Y的分布列为:Y1712P∴,∴该厂获利的均值为16.9万元当该厂雇佣4名工人时,4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(园林技术)园林设计阶段测试题及答案
- 多组学技术在精准医学中的技术演进趋势
- 2026年情绪疗愈民宿项目商业计划书
- 2026年智能降噪麦克风项目投资计划书
- 2026年青少年AI素养教育项目评估报告
- 2025年中职摄影摄像技术(摄影构图技巧)试题及答案
- 2026年智能开关面板项目公司成立分析报告
- 2025年中职第一学年(环境治理技术)废水处理阶段测试题及答案
- 2025年大学新闻学(新闻评论研究)试题及答案
- 2025年中职第一学年(市场营销)市场调研与分析试题及答案
- 《电力建设安全工作规程》-第1部分火力发电厂
- 2024全国职业院校技能大赛ZZ060母婴照护赛项规程+赛题
- 回顾性临床研究的设计和分析
- 配电一二次融合技术的发展应用
- 钢板铺设安全施工方案
- 八年级物理上册期末测试试卷-附带答案
- 硬件设计与可靠性
- 小学英语五年级上册Unit 5 Part B Let's talk 教学设计
- 垃圾渗滤液处理站运维及渗滤液处理投标方案(技术标)
- 经纬度丛书 秦制两千年:封建帝王的权力规则
- ppt素材模板超级玛丽
评论
0/150
提交评论