2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题含解析_第1页
2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题含解析_第2页
2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题含解析_第3页
2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题含解析_第4页
2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省宣城二中高二数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如下图,边长为2的正方体中,O是正方体的中心,M,N,T分别是棱BC,,的中点,下列说法错误的是()A. B.C. D.到平面MON的距离为12.设函数若函数有两个零点,则实数m的取值范围是()A. B.C. D.3.已知圆柱的底面半径是1,高是2,那么该圆柱的侧面积是()A.2 B.C. D.4.已知关于的不等式的解集为,则不等式的解集为()A.或 B.C.或 D.5.在下列函数中,求导错误的是()A., B.,C., D.,6.在试验“甲射击三次,观察中靶的情况”中,事件A表示随机事件“至少中靶1次”,事件B表示随机事件“正好中靶2次”,事件C表示随机事件“至多中靶2次”,事件D表示随机事件“全部脱靶”,则()A.A与C是互斥事件 B.B与C是互斥事件C.A与D是对立事件 D.B与D是对立事件7.执行如图所示的程序框图,若输出的的值为,则输入的的值可能为()A.96 B.97C.98 D.998.如图,四棱锥的底面是矩形,设,,,是棱上一点,且,则()A. B.C. D.9.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.双曲线的两个焦点为,,双曲线上一点到的距离为8,则点到的距离为()A.2或12 B.2或18C.18 D.211.已知等比数列的前n项和为,公比为q,若,则下列结论正确的是()A. B.C. D.12.已知点,动点P满足,则点P的轨迹为()A椭圆 B.双曲线C.抛物线 D.圆二、填空题:本题共4小题,每小题5分,共20分。13.已知向量是直线l的一个方向向量,向量是平面的一个法向量,若直线平面,则实数m的值为______14.若,则数列的前21项和___________.15.已知数列满足,且,则______,数列的通项_____16.已知圆:,圆:,则圆与圆的位置关系是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列前n项和为,且(1)求通项公式;(2)记,求数列的前n项和18.(12分)如图,在长方体中,,点E在棱上运动(1)证明:;(2)当E为棱的中点时,求直线与平面所成角的正弦值;(3)等于何值时,二面角的大小为?19.(12分)已知椭圆C的两焦点分别为,长轴长为6⑴求椭圆C的标准方程;⑵已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长度20.(12分)已知公差不为零的等差数列中,,且,,成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.21.(12分)已知函数(1)求单调增区间;(2)当时,恒成立,求实数的取值范围.22.(10分)在平面直角坐标系中,过点且倾斜角为的直线与曲线(为参数)交于两点.(1)将曲线的参数方程转化为普通方程;(2)求的长.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】建立空间直角坐标系,进而根据空间向量的坐标运算判断A,B,C;对D,算出平面MON的法向量,进而求出向量在该法向量方向上投影的绝对值,即为所求距离.【详解】如图建立空间直角坐标系,则.对A,,则,则A正确;对B,,则,则B正确;对C,,则C正确;对D,设平面MON的法向量为,则,取z=1,得,,所以到平面MON的距离为,则D错误.故选:D.2、D【解析】有两个零点等价于与的图象有两个交点,利用导数分析函数的单调性与最值,画出函数图象,数形结合可得结果.【详解】解:设,则,所以在上递减,在上递增,,且时,,有两个零点等价于与的图象有两个交点,画出的图象,如下图所示,由图可得,时,与的图象有两个交点,此时,函数有两个零点,实数m的取值范围是,故选:D.【点睛】方法点睛:本题主要考查分段函数的性质、利用导数研究函数的单调性、函数的零点,以及数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质3、D【解析】由圆柱的侧面积公式直接可得.【详解】故选:D4、A【解析】由一元二次不等式的解集可得且,确定a、b、c间的数量关系,再求的解集.【详解】由题意知:且,得,从而可化为,等价于,解得或.故选:A.5、B【解析】分别求得每个函数的导数即可判断.详解】;;;.故求导错误的是B.故选:B.6、C【解析】根据互斥事件、对立事件的定义即可求解.【详解】解:因为A与C,B与C可能同时发生,故选项A、B不正确;B与D不可能同时发生,但B与D不是事件的所有结果,故选项D不正确;A与D不可能同时发生,且A与D为事件的所有结果,故选项C正确故选:C.7、D【解析】根据程序框图得出的变换规律后求解【详解】当时,,当时,,当时,,当时,,可得输出的T关于t的变换周期为4,而,故时,输出的值为,故选:D8、B【解析】根据空间向量基本定理求解【详解】由已知故选:B9、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.10、C【解析】利用双曲线的定义求.【详解】解:由双曲线定义可知:解得或(舍)∴点到的距离为18,故选:C.11、D【解析】根据,可求得,然后逐一分析判断各个选项即可得解.【详解】解:因为,所以,因为,所以,所以,故A错误;又,所以,所以,所以,故BC错误;所以,故D正确.故选:D.12、A【解析】根据椭圆的定义即可求解.【详解】解:,故,又,根据椭圆的定义可知:P的轨迹为椭圆.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、-2【解析】由已知可得,即,计算即可得出结果.【详解】因为是直线的一个方向向量,是平面的一个法向量,且直线平面,所以,所以,解得.故答案为:-2.14、【解析】利用分组求和法求出答案即可.【详解】故答案为:15、①.②.【解析】判断出是等差数列,由此求得,利用累加法求得.【详解】依题意,则,所以数列是以为首项,公差为的等差数列,所以,,当时,,,也符合上式,所以.故答案为:;16、相交【解析】把两个圆的方程化为标准方程,分别找出两圆的圆心坐标和半径,利用两点间的距离公式求出两圆心的距离,与半径和与差的关系比较即可知两圆位置关系.【详解】化为,化为,则两圆圆心分别为:,,半径分别为:,圆心距为,,所以两圆相交.故答案为:相交.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)设等差数列的公差为,根据已知条件求,利用等差数列的通项公式可求得数列的通项公式.(2)求得,利用裂项相消法即可求得.【小问1详解】设等差数列的公差为,由,解得,所以,故数列的通项公式;【小问2详解】由(1)得:,所以,所以.18、(1)证明见解析;(2);(3).【解析】(1)连接、,长方体、线面垂直的性质有、,再根据线面垂直的判定、性质即可证结论.(2)连接,由已知条件及勾股定理可得、,即可求、,等体积法求到面的距离,又直线与面所成角即为与面所成角,即可求线面角的正弦值.(3)由题设易知二面角为,过作于,连接,可得二面角平面角为,令,由长方体的性质及勾股定理构造方程求即可.【小问1详解】由题设,连接、,又长方体中,∴为正方形,即,又面,面,即,∵,面,∴面,而面,即.【小问2详解】连接,由E为棱的中点,则,∴,又,故,∴,又,,故,则,由,若到面的距离为,又,,∴,可得,又,∴直线与面所成角即为与面所成角为,故.【小问3详解】二面角大小为,即二面角为,由长方体性质知:面,面,则,过作于,连接,又,∴面,则二面角平面角为,∴,令,则,故,而,,∴,∴,整理得,解得.∴时,二面角的大小为.19、(1);(2)【解析】(1)由焦点坐标可求c值,a值,然后可求出b的值.进而求出椭圆C的标准方程(2)先求出直线方程然后与椭圆方程联立利用韦达定理及弦长公式求出|AB|的长度【详解】解:⑴由,长轴长为6得:所以∴椭圆方程为⑵设,由⑴可知椭圆方程为①,∵直线AB的方程为②把②代入①得化简并整理得所以又【点睛】本题考查椭圆的方程和性质,考查韦达定理及弦长公式的应用,考查运算能力,属于中档题20、(1)(2)【解析】(Ⅰ)将数列中的项用和表示,根据等比数列的性质可得到关于的一元二次方程可求得的值,即可得到数列的通项公式;(Ⅱ)根据(Ⅰ)可求得的通项公式,用分组求和法可得其前项和.试题解析:(Ⅰ)设等差数列的公差为,因,且,,成等比数列,即,,成等比数列,所以有,即,解得或(舍去),所以,,数列的通项公式为.(Ⅱ)由(Ⅰ)知,所以.点睛:本题主要考查了等差数列,等比数列的概念,以及数列的求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.21、(1)单调增区间为;(2).【解析】(1)求导由求解.(2)将时,恒成立,转化为时,恒成立,令用导数法由求解即可.【详解】(1)因为函数所以令,解得,所以单调增区间为.(2)因为时,恒成立,所以时,恒成立,令则令因为时,恒成立,所以在单调递减.当时,在单调递减,故符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求;当时,单调递减,故存在使得则当时单调递增,不符合要求.综上.【点睛】方法点睛:恒(能)成立问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论