版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省之江教育联盟数学高二上期末综合测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线2.若曲线表示圆,则m的取值范围是()A. B.C. D.3.在等差数列中,若,则()A.6 B.9C.11 D.244.金刚石的成分为纯碳,是自然界中天然存在的最坚硬物质,它的结构是由8个等边三角形组成的正八面体.若某金刚石的棱长为2,则它的体积为()A. B.C. D.5.在等比数列中,,,则()A.2 B.4C.6 D.86.甲组数据为:5,12,16,21,25,37,乙组数据为:1,6,14,18,38,39,则甲、乙的平均数、极差及中位数相同的是()A.极差 B.平均数C.中位数 D.都不相同7.已知平面上两点,则下列向量是直线的方向向量是()A. B.C. D.8.对数的创始人约翰·奈皮尔(JohnNapier,1550-1617)是苏格兰数学家.直到18世纪,瑞士数学家欧拉发现了指数与对数的互逆关系,人们才认识到指数与对数之间的天然关系对数发现前夕,随着科技的发展,天文学家做了很多的观察,需要进行很多计算,特别是大数的连乘,需要花费很长时间.基于这种需求,1594年,奈皮尔运用了独创的方法构造出对数方法.现在随着科学技术的需要,一些幂的值用数位表示,譬如,所以的数位为4.那么的数位是()(注)A.6 B.7C.606 D.6079.已知直线方程为,则其倾斜角为()A.30° B.60°C.120° D.150°10.某高中学校高二和高三年级共有学生人,为了解该校学生的视力情况,现采用分层抽样的方法从三个年级中抽取一个容量为的样本,其中高一年级抽取人,则高一年级学生人数为()A. B.C. D.11.如图,在平行六面体中,AC与BD的交点为M.设,则下列向量中与相等的向量是()A. B.C. D.12.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.当曲线与直线有两个不同的交点时,实数k的取值范围是____________14.已知一组数据的平均数为4,方差为3,若另一组数据的平均数为10,则该组数据的方差为_______.15.已知,,则___________.16.已知△ABC的周长为20,且顶点,则顶点A的轨迹方程是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,在处有极值.(1)求、的值;(2)若,有个不同实根,求的范围.18.(12分)三棱柱中,侧面为菱形,,,,(1)求证:面面;(2)在线段上是否存在一点M,使得二面角为,若存在,求出的值,若不存在,请说明理由19.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.20.(12分)已知椭圆的左、右焦点分别为,且,直线过与交于两点,的周长为8(1)求的方程;(2)过作直线交于两点,且向量与方向相同,求四边形面积的取值范围21.(12分)已知数列的前项和是,且,等差数列中,(1)求数列的通项公式;(2)定义:记,求数列的前20项和22.(10分)如图,正方体的棱长为,分别是的中点,点在棱上,().(Ⅰ)三棱锥的体积分别为,当为何值时,最大?最大值为多少?(Ⅱ)若平面,证明:平面平面.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D2、C【解析】按照圆的一般方程满足的条件求解即可.【详解】或.故选:C.3、B【解析】根据等差数列的通项公式的基本量运算求解【详解】设的公差为d,因为,所以,又,所以故选:B4、C【解析】由几何关系先求出一个正四面体的高,再结合锥体体积公式即可求解正八面体的体积.【详解】如图,设底面中心为,连接,由几何关系知,,则正八面体体积为.故选:C5、D【解析】由等比中项转化得,可得,求解基本量,由等比数列通项公式即得解【详解】设公比为,则由,得,即故,解得故选:D6、B【解析】由平均数、极差及中位数的定义依次求解即可比较【详解】,,故甲、乙的平均数相同,甲、乙的极差分别为,,故不同,甲、乙的中位数分别为,,故不同,故选:7、D【解析】由空间向量的坐标运算和空间向量平行的坐标表示,以及直线的方向向量的定义可得选项.【详解】解:因为两点,则,又因为与向量平行,所以直线的方向向量是,故选:D.8、D【解析】根据已知条件,设,则,求出t的范围,即可判断其数位.【详解】设,则,则,则,,的数位是607.故选:D.9、D【解析】由直线方程可得斜率,根据斜率与倾斜角的关系即可求倾斜角大小.【详解】由题设,直线斜率,若直线的倾斜角为,则,∵,∴.故选:D10、B【解析】先得到从高二和高三年级抽取人,再利用分层抽样进行求解.【详解】设高一年级学生人数为,因为从三个年级中抽取一个容量为的样本,且高一年级抽取人,所以从高二和高三年级抽取人,则,解得,即高一年级学生人数为.故选:B11、B【解析】根据代入计算化简即可.【详解】故选:B.12、D【解析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】求出直线恒过的定点,结合曲线的图象,数形结合,找出临界状态,即可求得的取值范围.【详解】因为,故可得,其表示圆心为,半径为的圆的上半部分;因为,即,其表示过点,且斜率为的直线.在同一坐标系下作图如下:不妨设点,直线斜率为,且过点与圆相切的直线斜率为数形结合可知:要使得曲线与直线有两个不同的交点,只需即可.容易知:;不妨设过点与相切的直线方程为,则由直线与圆相切可得:,解得,故.故答案为:.14、12【解析】根据题意,先通过原始数据的平均数、方差及新数据的平均数求出k,进而求出新数据的方差.【详解】由题意,原式数据的平均数和方程分别为:,则新数据的平均数,于是新数据的方差.故答案为:12.15、5【解析】根据空间向量的数量积运算的坐标表示运算求解即可.【详解】解:因为,,所以.故答案为:16、.【解析】由周长确定,故轨迹是椭圆,注意焦点位置和抠除不符合条件的点即可.【详解】解:,所以,,则顶点A的轨迹方程是.故答案为:.【点睛】考查椭圆定义的应用,基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据题设条件可得,由此可解得与的值(2)依题意可知直线与函数的图象有三个不同的交点,则的取值范围介于极小值与极大值之间.【小问1详解】因为函数,在处有极值,所以,即,解得,.【小问2详解】由(1)知,,所以在上,,单调递增,在上,,单调递减,在上,,单调递增,所以,,若有3个不同实根,则,所以的取值范围为.18、(1)证明见解析;(2)【解析】(1)取BC的中点O,连结AO、,在三角形中分别证明和,再利用勾股定理证明,结合线面垂直的判定定理可证明平面,再由面面垂直的判定定理即可证明结果.(2)建立空间直角坐标系,假设点M存在,设,求出M点坐标,然后求出平面的法向量,利用空间向量的方法根据二面角的平面角为可求出的值.【详解】(1)取BC的中点O,连结AO,,,为等腰直角三角形,所以,;侧面为菱形,,所以三角形为为等边三角形,所以,又,所以,又,满足,所以;因为,所以平面,因为平面中,所以平面平面.(2)由(1)问知:两两垂直,以O为坐标原点,为轴,为轴,为轴建立空间之间坐标系.则,,,,若存在点M,则点M在上,不妨设,则有,则,有,,设平面的法向量为,则解得:平面的法向量为则解得:或(舍)故存在点M,.【点睛】本题考查立体几何探索是否存在的问题,属于中档题.方法点睛:(1)判断是否存在的问题,一般先假设存在;(2)设出点坐标,作为已知条件,代入计算;(3)根据结果,判断是否存在.19、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.20、(1);(2).【解析】(1)根据给定条件直接求出半焦距,及长半轴长即可作答.(2)根据给定条件结合椭圆的对称性可得四边形为平行四边形,设出直线l的方程,与椭圆C的方程联立,借助韦达定理、对勾函数性质计算作答.【小问1详解】依题意,椭圆半焦距,由椭圆定义知,的周长,解得,,因此椭圆的方程为.【小问2详解】依题意,直线的斜率不为0,设直线的方程为,,由消去并整理得:,则,,因与方向相同,即,又椭圆是以原点O为对称中心的中心对称图形,于是得,即四边形为平行四边形,其面积,则,令,则,则,显然在上单调递增,则当时,,即,从而可得,所以四边形面积的取值范围为.【点睛】结论点睛:过定点的直线l:y=kx+b交圆锥曲线于点,,则面积;过定点直线l:x=ty+a交圆锥曲线于点,,则面积21、(1);(2)【解析】(1)利用求得递推关系得等比数列,从而得通项公式,再由等差数列的基本时法求得通项公式;(2)根据定义求得,然后分组求和法求得和【小问1详解】由题意,当时,两式相减,得,即是首项为3,公比为3的等比数列设数列的公差为,小问2详解】由22、(Ⅰ),.(Ⅱ)见解析.【解析】(Ⅰ)由题可知,,由和,结合基本不等式可求最值;(Ⅱ)连接交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖北省自然资源资产运营有限公司招聘备考题库含答案详解
- 中国五环工程有限公司2026年校园招聘备考题库完整参考答案详解
- 宁夏回族自治区电力设计院有限公司2026届校园招聘备考题库及参考答案详解1套
- 2026年绵阳绵太实业有限公司关于招聘投资管理岗位的备考题库及答案详解一套
- 2026河南郑州政务大厅招聘12人笔试备考试题及答案解析
- 丰林县2025年度公开招聘(编外)医生的备考题库及参考答案详解1套
- 2026年度1月陕西西安市胸科医院编制外聘用人员招聘1人笔试备考试题及答案解析
- 2026年北京林业大学附属小学招聘2人笔试模拟试题及答案解析
- 2026湖北省面向西北农林科技大学普通选调生招录笔试模拟试题及答案解析
- 2026福建省云霄立人学校初中数学教师招聘1人笔试模拟试题及答案解析
- 2026年包头轻工职业技术学院单招职业适应性测试题库附答案
- 2025至2030中国应急行业市场深度分析及发展趋势与行业项目调研及市场前景预测评估报告
- 2025年中厚钢板行业分析报告及未来发展趋势预测
- 基于多因素分析的新生儿重症监护室患儿用药系统风险评价模型构建与实证研究
- 光伏工程挂靠合同范本
- 2025新能源光伏、风电发电工程施工质量验收规程
- 电磁炮课件教学课件
- JJF 2287-2025 测量水池声学特性校准规范(相关函数法)
- 财务岗位离职交接清单模版
- 光伏电站试运行与交付标准指南
- 2025数据基础设施参考架构
评论
0/150
提交评论