2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题含解析_第1页
2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题含解析_第2页
2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题含解析_第3页
2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题含解析_第4页
2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省武汉为明实验学校高一上数学期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,的图象与直线有两个交点,则的最大值为()A.1 B.2C. D.2.若函数(,且)在区间上单调递增,则A., B.,C., D.,3.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.4.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.5.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点6.方程的解所在的区间是()A. B.C. D.7.下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行直线确定三个平面.其中正确有A.1个 B.2个C.3个 D.4个8.设函数,A.3 B.6C.9 D.129.已知直线经过点,倾斜角的正弦值为,则的方程为()A. B.C. D.10.已知实数,满足,,则的最大值为()A. B.1C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象向右平移个单位,再将图象上每一点的横坐标缩短到原来的倍,得到函数的图象,则函数的解析式为____________12.如图所示,正方体的棱长为1,B′C∩BC′=O,则AO与A′C′所成角的度数为________.13.已知,α为锐角,则___________.14.函数的值域是__________15.如图,全集,A是小于10的所有偶数组成的集合,,则图中阴影部分表示的集合为__________.16.经过点P(3,2),且在两坐标轴上的截距相等的直线方程为(写出一般式)___三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为落实国家“精准扶贫”政策,某企业于年在其扶贫基地投入万元研发资金,用于养殖业发展,并计划今后年内在此基础上,每年投入的资金比上一年增长(1)写出第年(年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(年为第一年),每年投入的资金数将超过万元?(参考数据:,,,,)18.已知是定义在上的偶函数,当时,(1)求;(2)求的解析式;(3)若,求实数a的取值范围19.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.20.已知,,全集.(1)求和;(2)已知非空集合,若,求实数的取值范围.21.已知定义域为的函数是奇函数(1)求实数,的值;(2)判断的单调性,并用单调性的定义证明;(3)当时,恒成立,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由可得,然后可得的最大值为,即可得到答案.【详解】由可得,所以当时,由与有两个交点可得的最大值为所以则的最大值为故选:D2、B【解析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选3、B【解析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B4、B【解析】所以,所以。故选B。5、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B6、B【解析】作差构造函数,利用零点存在定理进行求解.【详解】令,则,,因为,所以函数的零点所在的区间是,即方程的解所在的区间是.故选:B.7、A【解析】利用三个公理及其推论逐项判断后可得正确的选项.【详解】对于①,三个不共线的点可以确定一个平面,所以①不正确;对于②,一条直线和直线外一点可以确定一个平面,所以②不正确;对于③,若三点共线了,四点一定共面,所以③正确;对于④,当三条平行线共面时,只能确定一个平面,所以④不正确.故选:A.8、C【解析】.故选C.9、D【解析】由题可知,则∵直线经过点∴直线的方程为,即故选D10、C【解析】运用三角代换法,结合二倍角的正弦公式、正弦型函数的最值进行求解【详解】由,得,令,则,因为,所以,即,所以的最大值为,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用函数的图象变换规律,即可得到的解析式【详解】函数的图象向右平移个单位,可得到,再将图象上每一点的横坐标缩短到原来的倍,可得到.故.【点睛】本题考查了三角函数图象的平移变换,属于基础题12、30°【解析】∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC(或其补角).∵OC⊂平面BB′C′C,AB⊥平面BB′C′C,∴OC⊥AB.又OC⊥OB,AB∩BO=B,∴OC⊥平面ABO.又AO⊂平面ABO,∴OC⊥OA.在Rt△AOC中,,∴∠OAC=30°.即AO与A′C′所成角度数为30°.点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角13、【解析】由同角三角函数关系和诱导公式可得结果.【详解】因为,且为锐角,则,所以,故.故答案为:.14、【解析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.15、【解析】根据维恩图可知,求,根据补集、交集运算即可.【详解】,A是小于10的所有偶数组成的集合,,,由维恩图可知,阴影部分为,故答案为:16、x+y-5=0或2x-3y=0【解析】当直线经过原点时,在两坐标轴上的截距相等,可得其方程为2x﹣3y=0;当直线不经过原点时,可得它的斜率为﹣1,由此设出直线方程并代入P的坐标,可求出其方程为x+y﹣5=0,最后加以综合即可得到答案【详解】当直线经过原点时,设方程为y=kx,∵直线经过点P(3,2),∴2=3k,解之得k,此时的直线方程为yx,即2x﹣3y=0;当直线不经过原点时,设方程为x+y+c=0,将点P(3,2)代入,得3+2+c=0,解之得c=﹣5,此时的直线方程为x+y﹣5=0综上所述,满足条件的直线方程为:2x﹣3y=0或x+y﹣5=0故答案为:x+y-5=0或2x-3y=0【点睛】本题给出直线经过定点且在两个轴上的截距相等,求直线的方程.着重考查了直线的基本量与基本形式等知识,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),其定义域为(2)第年【解析】(1)由题设,应用指数函数模型,写出前2年的研发资金,然后进一部确定函数解析式及定义域;(2)由(1)得,然后利用对数运算求解集.【小问1详解】第一年投入的资金数为万元,第二年投入的资金数为万元,第x年(年为第一年)该企业投入的资金数(万元)与的函数关系式为,其定义域为【小问2详解】由(1)得,,即,因为,所以即该企业从第年,就是从年开始,每年投入的资金数将超过万元18、(1)2(2)(3)【解析】(1)根据偶函数这一性质将问题转化为求的值,再代入计算即可;(2)设,根据偶函数这一性质,求出另一部分的解析即可;(3)由(2)可知函数的单调性,结合单调性解不等式即可.【小问1详解】因为是偶函数,所以小问2详解】设,则,因为是定义在上的偶函数,所以当时,,所以(也可表示为【小问3详解】由及是偶函数得,由得,在上单调递增,所以由得,,解得,即a的取值范围是.19、(1);(2).【解析】(1)要使有意义,则即,要使有意义,则即求交集即可求函数的定义域;(2)实数,且,所以即可得出的取值范围.试题解析:(1)要使有意义,则即要使有意义,则即所以的定义域.(2)由(1)可得:即所以,故的取值范围是20、(1)(2)【解析】(1)求得集合,根据集合的交集、并集和补集的运算,即可求解;(2)由,所以,结合集合的包含关系,即可求解.【详解】(1)由题意,集合,因为集合,则,所以,.(2)由题意,因为,所以,又因为,,所以,即实数的取值范围为.【点睛】本题主要考查了集合的交集、并集和补集的运算,以及利用集合的包含关系求解参数问题,其中解答中熟记集合的基本运算,以及合理利用集合的包含关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.21、(1),(2)在上单调递增,证明见解析(3)的取值范围为.【解析】(1)根据得到,根据计算得到,得到答案.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论