版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省沈阳市五校协作体2026届高二上数学期末考试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题是真命题,那么的取值范围是()A. B.C. D.2.在数列中,,,则()A.985 B.1035C.2020 D.20703.圆C:的圆心坐标和半径分别为()A.和4 B.(-3,2)和4C.和 D.和4.圆的圆心坐标与半径分别是()A. B.C. D.5.在四面体中,为的中点,为棱上的点,且,则()A. B.C. D.6.如图,在四棱锥中,底面ABCD是平行四边形,已知,,,,则()A. B.C. D.7.如图,用随机模拟方法近似估计在边长为e(e为自然对数的底数)的正方形中阴影部分的面积,先产生两组区间上的随机数和,因此得到1000个点对,再统计出落在该阴影部分内的点数为260个,则此阴影部分的面积约为()A.0.70 B.1.04C.1.86 D.1.928.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角9.已知命题,;命题,,那么下列命题为假命题的是()A. B.C. D.10.十二平均律是我国明代音乐理论家和数学家朱载堉发明的.明万历十二年(公元1584年),他写成《律学新说》,提出了十二平均律的理论.十二平均律的数学意义是:在1和2之间插入11个正数,使包含1和2的这13个数依次成递增的等比数列.依此规则,插入的第四个数应为()A. B.C. D.11.抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线,O为坐标原点,一条平行于x轴的光线从点射入,经过C上的点A反射后,再经C上另一点B反射后,沿直线射出,经过点N.下列说法正确的是()A.若,则 B.若,则平分C.若,则 D.若,延长AO交直线于点D,则D,B,N三点共线12.执行如图所示的流程图,则输出k的值为()A.3 B.4C.5 D.2二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义域上的单调递增函数,是的导数且为定义域上的单调递减函数,请写出一个满足条件的函数的解析式___________14.已知△ABC的周长为20,且顶点,则顶点A的轨迹方程是______15.设空间向量,且,则___________.16.已知点为椭圆上的动点,为圆的任意一条直径,则的最大值是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设正项数列的前项和为,已知,(1)求数列的通项公式;(2)数列满足,数列的前项和为,若不等式对一切恒成立,求的取值范围18.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.19.(12分)如图,在四棱锥P-ABCD中,PD=2AD=4,PD⊥CD,PD⊥AD,底面ABCD为正方形,M、N、Q分别为AD、PD、BC的中点(1)证明:面PAQ//面MNC;(2)求二面角M-NC-D的余弦值20.(12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根(1)若命题为假命题,求实数的取值范围;(2)如果“”为真命题,且“”为假命题,求实数的取值范围21.(12分)如图,在几何体ABCEFG中,四边形ACGE为平行四边形,为等边三角形,四边形BCGF为梯形,H为线段BF的中点,,,,,,.(1)求证:平面平面BCGF;(2)求平面ABC与平面ACH夹角的余弦值.22.(10分)已知函数.(1)若在处取得极值,求在处的切线方程;(2)讨论的单调性;(3)若函数在上无零点,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】依据题意列出关于的不等式,即可求得的取值范围.【详解】当时,仅当时成立,不符合题意;当时,若成立,则,解之得综上,取值范围是故选:C2、A【解析】根据累加法得,,进而得.【详解】解:因为所以,当时,,,……,,所以,将以上式子相加得,所以,,.当时,,满足;所以,.所以.故选:A3、C【解析】先将方程化为一般形式,再根据公式计算求解即可.【详解】解:可化为,由圆心为,半径,易知圆心的坐标为,半径为故选:C4、C【解析】将圆的一般方程化为标准方程,即可得答案.【详解】由题可知,圆的标准方程为,所以圆心为,半径为3,故选.5、A【解析】利用空间向量加法运算,减法运算,数乘运算即可得到答案.【详解】如图故选:A6、A【解析】利用空间向量加法法则直接求解【详解】连接BD,如图,则故选:A7、D【解析】根据几何概型的概率公式即可直接求出答案.【详解】易知,根据几何概型的概率公式,得,所以.故选:D.8、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C9、B【解析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B10、C【解析】先求出等比数列的公比,再由等比数列的通项公式即可求解.【详解】用表示这个数列,依题意,,则,,第四个数即.故选:C.11、D【解析】根据求出焦点为、点坐标,可得直线的方程与抛物线方程联立得点坐标,由两点间的距离公式求出可判断AC;时可得,.由可判断B;求出点坐标可判断D.【详解】如图,若,则,C的焦点为,因为,所以,直线的方程为,整理得,与抛物线方程联立得,解得或,所以,所以,选项A错误;时,因为,所以.又,,所以不平分,选项B不正确;若,则,C的焦点为,因为,所以,直线的方程为,所以,所以,选项C错误;若,则,C的焦点为,因为,所以,直线的方程为,所以,直线的方程为,延长交直线于点D,所以则,所以D,B,N三点共线,选项D正确;故选:D.12、B【解析】根据程序框图运行程序,直到满足,输出结果即可.【详解】按照程序框图运行程序,输入,则,,不满足,循环;,,不满足,循环;,,不满足,循环;,,满足,输出结果:故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、(答案不唯一)【解析】由题意可得0,结合在定义域上为减函数可取.【详解】因为在定义域为单调增函数所以在定义域上0,又因为在定义域上为减函数,且大于等于0.所以可取(),(),满足条件所以可为().故答案为:(答案不唯一).14、.【解析】由周长确定,故轨迹是椭圆,注意焦点位置和抠除不符合条件的点即可.【详解】解:,所以,,则顶点A的轨迹方程是.故答案为:.【点睛】考查椭圆定义的应用,基础题.15、1【解析】根据,由求解.【详解】因为向量,且,所以,即,解得.故答案为:116、【解析】设点,则且,计算得出,再利用二次函数的基本性质即可求得的最大值.【详解】解:圆的圆心为,半径长为,设点,由点为椭圆上的动点,可得:且,由为圆的任意一条直径可得:,,,,,当时,取得最大值,即.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用的关系求的通项公式;(2)由(1)得,应用错位相减法求,根据不等式,讨论n的奇偶性求参数范围即可.【小问1详解】由题设,当时,则,整理得,,则,当时,,又得:,故,所以数列是首项、公差均为2的等差数列,故.【小问2详解】由(1),,所以,,两式相减得,故,所以令,易知:单调递增,若为偶数,则,所以;若为奇数,则,所以,即综上,18、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方程为,即,圆的圆心到l的距离,则;综上,l为x=1或y=1.19、(1)证明过程见解析(2)【解析】(1)由线线平行证明线面平行;(2)建立空间直角坐标系,利用空间向量进行求解二面角的余弦值.【小问1详解】因为M,N是DA,PD的中点,所以MN//AP,因为平面PAQ,平面PAQ,所以MN//平面PAQ因为四边形ABCD为正方形,且Q为BC中点,所以MA//CQ,且MA=CQ,所以四边形MAQC为平行四边形,所以CM//AQ,因为平面PAQ,平面PAQ,所以MC//平面PAQ,因为,所以面PAQ//面MNC【小问2详解】因为PD⊥CD,PD⊥AD,AD⊥CD故以D为坐标原点,DA所在直线为x轴,DC所在直线为y轴,DP所在直线为z轴建立空间直角坐标系,则,,,设平面NMC的法向量为,则,令得:,所以,平面NDC的法向量为,则,设二面角M-NC-D的大小为,显然为锐角,则20、(1);(2)【解析】(1)先分别求出命题为真命题和命题为真命题时参数的范围,则可得当命题为假命题,实数的取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假,再分真,且假,和真,且假两种情况分别求出参数的范围,再综合得到答案.【详解】命题为真命题:对任意实数都有恒成立或;命题为真命题:关于的方程有实数根;(1)命题为假命题,则实数取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假.如果真,且假,有,且,则如果真,且假,有或,且,则综上,实数的取值范围为21、(1)证明见解析(2)【解析】(1)在中,由正弦定理知可知,利用三角形内角和可知即,又因为,再根据面面垂直的判定定理,即可证明结果;(2)取BC中点O,由(1)得:平面BCGF,,以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用空间向量求二面角,即可求出结果.【小问1详解】证明:(1)在中,由正弦定理知:解得因为,所以又因为,所以所以又因为,所以直线平面ABC又因为平面BCGF所以平面平面BCGF【小问2详解】解:取BC中点O,连结OA,OH,由(1)得:平面BCGF,则以O为原点,OB,OH,OA所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系在中,则,,平面ABC的一个法向量为设平面ACH的一个法向量为因为,所以,取,则设平面APD与平面PDF夹角为,所以.22、(1);(2)见解析;(3).【解析】(1)根据在处取极值可得,可求得,验证可知满足题意;根据导数的几何意义求得切线斜率,利用点斜式可求得切线方程;(2)求导后,分别在和两种情况下讨论导函数的符号,从而得到的单调性;(3)根据在上无零点可知在上的最大值和最小值符号一致;分别在,两种情况下根据函数的单调性求解最大值和最小值,利用符号一致构造不等式求得结果.【详解】(1)由题意得:在处取极值,解得:则当时,,单调递减;当时,,单调递增为极小值点,满足题意函数当时,由得:在处的切线方程为:,即:(2)由题意知:函数的定义域为,①当时若,恒成立,恒成立在内单调递减②当时由,得:;由得:在内单调递减,在内单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职文秘(档案管理规范)试题及答案
- 2025年中职数字媒体技术应用(数字媒体操作)试题及答案
- 2025年大学酿酒工程(酿酒工程设计)试题及答案
- 2025年高职幼儿发展与健康管理(幼儿健康评估)试题及答案
- 2025年高职工业工程技术(生产流程优化)试题及答案
- 2025年中职(食品包装技术)包装设计阶段测试题及答案
- 2025年大学二年级(构造地质学)构造地质学试题及答案
- 2025年大学大三(旅游企业管理)管理策略实践测试试题及答案
- 2025年大学第四学年(工商管理)企业运营综合案例试题及答案
- 2025年高职(市场调查与分析)调查分析阶段测试题及答案
- DB64-266-2018 建筑工程资料管理规程
- 药店gsp考试试题及答案财务
- 工程档案归档培训课件
- 山东省菏泽市菏泽经开区2024-2025学年八年级(上)期末物理试卷(含解析)
- 高级会计师评审专业技术工作业绩报告
- 银龄计划教师总结
- 万曼呼吸机操作
- 北京市顺义区近三年(2021-2023)七年级上学期期末试卷分类汇编:单项填空
- 集装箱采购投标方案(技术方案)
- 里氏硬度计算表
- 输电线路基础知识输电线路组成与型式
评论
0/150
提交评论