版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽六安市舒城中学2026届数学高一上期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间是()A. B.C. D.2.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]3.已知是第二象限角,且,则点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限4.圆:与圆:的位置关系为()A.相交 B.相离C.外切 D.内切5.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.6.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:1245612313615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)7.已知实数满足,那么的最小值为(
)A. B.C. D.8.设f(x)为偶函数,且在区间(-∞,0)上是增函数,,则xf(x)<0解集为()A.(-1,0)∪(2,+∞) B.(-∞,-2)∪(0,2)C.(-2,0)∪(2,+∞) D.(-2,0)∪(0,2)9.如图,在四棱锥中,底面为正方形,且,其中,,分别是,,的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面,其中恒成立的为()A.①③ B.③④C.①④ D.②③10.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则的值等于______12.函数的定义域为__________________.13.当时,函数的值总大于,则的取值范围是________14.函数的单调递增区间是___________.15.函数的零点个数为___16.定义A-B={x|x∈A且xB},已知A={2,3},B={1,3,4},则A-B=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道:设函数的定义域为,那么“函数的图象关于原点成中心对称图形”的充要条件是“,”.有同学发现可以将其推广为:设函数的定义域为,那么“函数的图象关于点成中心对称图形”的充要条件是“,”.(1)判断函数的奇偶性,并证明;(2)判断函数的图象是否为中心对称图形,若是,求出其对称中心坐标;若不是,说明理由.18.已知二次函数的图象关于直线对称,且关于的方程有两个相等的实数根.(1)的值域;(2)若函数且在上有最小值,最大值,求的值.19.已知函数,且.(1)求函数的定义域,并判断函数的奇偶性.(2)求满足的实数x的取值范围.20.已知角的终边在第二象限,且与单位圆交于点(1)求的值;(2)求的值.21.如图,在平面直角坐标系中,角的始边与轴的非负半轴重合,终边在第二象限且与单位圆相交于点,过点作轴的垂线,垂足为点,.(1)求的值;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据函数零点存在性定理判断即可【详解】,,,故零点所在区间为故选:B2、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.3、B【解析】根据所在象限可判断出,,从而可得答案.【详解】为第二象限角,,,则点位于第二象限.故选:B.4、A【解析】根据圆心距以及圆的半径确定正确选项.【详解】圆:的圆心为,半径为.圆:的圆心为,半径为.,,所以两圆相交.故选:A5、B【解析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【点睛】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.6、C【解析】由表格数据,结合零点存在定理判断零点所在区间.【详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.7、A【解析】表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【点睛】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.8、C【解析】结合函数的性质,得到,画出函数的图象,结合图象,即可求解.【详解】根据题意,偶函数f(x)在(-∞,0)上为增函数,又,则函数f(x)在(0,+∞)上为减函数,且,函数f(x)的草图如图,又由,可得或,由图可得-2<x<0或x>2,即不等式的解集为(-2,0)∪(2,+∞).故选:C.本题主要考查了函数的奇偶性与单调性的应用,其中解答中熟记函数的奇偶性与单调性,结合函数的图象求解是解答的关键,着重考查推理与运算能力.9、A【解析】分析:如图所示,连接AC、BD相交于点O,连接EM,EN(1)由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,进而得到SO⊥AC.可得AC⊥平面SBD.由已知E,M,N分别是BC,CD,SC的中点,利用三角形的中位线可得EM∥BD,MN∥SD,于是平面EMN∥平面SBD,进而得到AC⊥平面EMN,AC⊥EP;(2)由异面直线的定义可知:EP与BD是异面直线,因此不可能EP∥BD;(3)由(1)可知:平面EMN∥平面SBD,可得EP∥平面SBD;(4)由(1)同理可得:EM⊥平面SAC,可用反证法证明:当P与M不重合时,EP与平面SAC不垂直详解:如图所示,连接AC、BD相交于点O,连接EM,EN对于(1),由正四棱锥S﹣ABCD,可得SO⊥底面ABCD,AC⊥BD,∴SO⊥AC∵SO∩BD=O,∴AC⊥平面SBD,∵E,M,N分别是BC,CD,SC的中点,∴EM∥BD,MN∥SD,而EM∩MN=N,∴平面EMN∥平面SBD,∴AC⊥平面EMN,∴AC⊥EP.故正确对于(2),由异面直线的定义可知:EP与BD是异面直线,不可能EP∥BD,因此不正确;对于(3),由(1)可知:平面EMN∥平面SBD,∴EP∥平面SBD,因此正确对于(4),由(1)同理可得:EM⊥平面SAC,若EP⊥平面SAC,则EP∥EM,与EP∩EM=E相矛盾,因此当P与M不重合时,EP与平面SAC不垂直.即不正确故选A点睛:本题考查了空间线面、面面的位置关系判定,属于中档题.对于这种题目的判断一般是利用课本中的定理和性质进行排除,判断.还可以画出样图进行判断,利用常见的立体图形,将点线面放入特殊图形,进行直观判断.10、C【解析】根据互斥事件定义依次判断各个选项即可.【详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】由分段函数可得,从而可得出答案.【详解】解:由,得.故答案为:2.12、【解析】由,解得,所以定义域为考点:本题考查定义域点评:解决本题关键熟练掌握正切函数的定义域13、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,14、##【解析】求出函数的定义域,利用复合函数法可求得函数的单调递增区间.【详解】由得,解得,所以函数的定义域为.设内层函数,对称轴方程为,抛物线开口向下,函数在区间上单调递增,在区间上单调递减,外层函数为减函数,所以函数的单调递增区间为.故答案为:.15、2【解析】当x≤0时,令函数值为零解方程即可;当x>0时,根据零点存在性定理判断即可.【详解】当x≤0时,,∵,故此时零点为;当x>0时,在上单调递增,当x=1时,y<0,当x=2时,y>0,故在(1,2)之间有唯一零点;综上,函数y在R上共有2个零点.故答案为:2.16、{2}【解析】∵A={2,3},B={1,3,4},又∵A-B={x|x∈A且xB},∴A-B={2}故答案为{2}.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数为奇函数,证明见解析(2)是中心对称图形,对称中心坐标为【解析】(1)根据奇函数的定义,即可证明结果;(2)根据题意,由函数的解析式可得,即可得结论【小问1详解】解:函数为奇函数证明如下:函数的定义域为R,关于原点对称又所以函数为奇函数.【小问2详解】解:函数的图象是中心对称图形,其对称中心为点解方程得,所以函数的定义域为明显定义域仅关于点对称所以若函数的图象是中心对称图形,则其对称中心横坐标必为设其对称中心为点,则由题意可知有,令,可得,所以所以若函数为中心对称图形,其对称中心必定为点下面论证函数的图象关于点成中心对称图形:即只需证明,,得证18、(1)(2)或【解析】(1)由题意可得且,从而可求出的值,则得,然后求出的值域,进而可求出的值域,(2)函数,设,则,然后分和两种情况求的最值,列方程可求出的值【小问1详解】根据题意,二次函数的图象关于直线对称,则有,即,①又由方程即有两个相等的实数根,则有,②联立①②可得:,,则,则有,则,即函数的值域为;【小问2详解】根据题意,函数,设,则,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,当时,,则有,而,若函数在上有最小值,最大值,则有,解可得,即,综合可得:或19、(1)定义域为,奇函数;(2)当时的取值范围是;当时的取值范围是【解析】(1)根据题意,先求出函数的定义域,进而结合函数的解析式可得,即可得结论;(2)根据题意,即,分与两种情况讨论可得的取值范围,综合即可得答案详解】解:(1)根据题意,,则有,解可得,则函数的定义域为,又由,则是奇函数;(2)由得①当时,,解得;②当时,,解得;当时的取值范围是;当时的取值范围是【点睛】本题考查函数的单调性与奇偶性的应用,注意判断奇偶性要先求出函数的定义域,属于中档题20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职机场贵宾服务(贵宾服务基础)试题及答案
- 2025年高职美容与美体艺术(美容仪器使用)试题及答案
- 2025年大学材料化学(材料合成技术)试题及答案
- 2025年中职第一学年(新能源汽车运用与维修)新能源汽车维护试题及答案
- 2025年中职烟草栽培与加工(烟草烘烤技术)试题及答案
- 2025年高职施工员实务(施工管理)试题及答案
- 2025年高职金属材料与热处理技术(金属材料处理)试题及答案
- 2025年高职语言艺术(诗歌创作技巧)试题及答案
- 2025年高职摩托艇运动实践(摩托艇实践)试题及答案
- 2025年大学大三(工商管理)企业文化建设综合测试试题及答案
- 养老院老人生活设施管理制度
- 2026年直播服务合同
- 自适应巡航控制与跟车技术-深度研究
- 2020海湾消防GST-DJ-N500-GST-DJ-N900 消防设备电源状态监控器安装使用说明书
- 工程造价咨询的保密控制措施
- 铁路劳动安全 课件 第二篇 常见事故预防
- 农贸市场环境卫生清洁行动工作方案
- 淮安市2022-2023学年七年级上学期期末地理试题
- 2024届广东省深圳市中考物理模拟试卷(一模)(附答案)
- 诊所污水处理管理制度
- 辅导员工作的职责与使命课件
评论
0/150
提交评论