湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题含解析_第1页
湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题含解析_第2页
湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题含解析_第3页
湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题含解析_第4页
湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省部分省级示范性重点中学教科研协作体2026届高一数学第一学期期末经典试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是A.事件“甲分得1张白牌”与事件“乙分得1张红牌”B.事件“甲分得1张红牌”与事件“乙分得1张蓝牌”C.事件“甲分得1张白牌”与事件“乙分得2张白牌”D.事件“甲分得2张白牌”与事件“乙分得1张黑牌”2.在中,角、、的对边分别为、、,已知,,,则A. B.C. D.3.下图是一几何体的平面展开图,其中四边形为正方形,,,,为全等的等边三角形,分别为的中点.在此几何体中,下列结论中错误的为A.直线与直线共面 B.直线与直线是异面直线C.平面平面 D.面与面的交线与平行4.过点,且圆心在直线上的圆的方程是()A. B.C. D.5.已知sinα+cosα=,则sin的值为()A.- B.C.- D.6.如图中的图象所表示的函数的解析式为()A.BC.D.7.若点在角的终边上,则的值为A. B.C. D.8.实数满足,则下列关系正确的是A. B.C. D.9.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C D.10.函数的部分图象大致为()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知tanα=3,则sinα(cosα-sinα)=______12.已知,且.(1)求的值;(2)求的值.13.每一个声音都是由纯音合成的,纯音的数学模型是函数.若的部分图象如图所示,则的解析式为________.14.=______15.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____16._____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数的图象关于直线x=对称,且,求函数的单调递增区间.(2)在(1)的条件下,当时,函数有且只有一个零点,求实数b的取值范围.18.已知(1)若,求的值;(2)若,且,求实数的值19.如图,直三棱柱中,分别为的中点.(1)求证:平面;(2)已知,,,求三棱锥的体积.20.在三棱锥中,平面,,,,分别是,的中点,,分别是,的中点.(1)求证:平面.(2)求证:平面平面.21.已知函数.(1)求的定义域;(2)若角在第一象限且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】对于,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但中的两个事件不可能发生,是互斥事件,故选C.2、B【解析】分析:直接利用余弦定理求cosA.详解:由余弦定理得cosA=故答案为B.点睛:(1)本题主要考查余弦定理在解三角形中的应用,意在考查学生对余弦定理的掌握水平.(2)已知三边一般利用余弦定理:.3、C【解析】画出几何体的图形,如图,由题意可知,A,直线BE与直线CF共面,正确,因为E,F是PA与PD的中点,可知EF∥AD,所以EF∥BC,直线BE与直线CF是共面直线;B,直线BE与直线AF异面;满足异面直线的定义,正确C,因为△PAB是等腰三角形,BE与PA的关系不能确定,所以平面BCE⊥平面PAD,不正确D,∵AD∥BC,∴AD∥平面PBC,∴面PAD与面PBC的交线与BC平行,正确故答案选C4、B【解析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B5、C【解析】应用辅助角公式可得,再应用诱导公式求目标三角函数的值.【详解】由题设,,而.故选:C6、B【解析】分段求解:分别把0≤x≤1及1≤x≤2时解析式求出即可【详解】当0≤x≤1时,设f(x)=kx,由图象过点(1,),得k=,所以此时f(x)=x;当1≤x≤2时,设f(x)=mx+n,由图象过点(1,),(2,0),得,解得所以此时f(x)=.函数表达式可转化为:y=|x-1|(0≤x≤2)故答案为B【点睛】本题考查函数解析式的求解问题,本题根据图象可知该函数为分段函数,分两段用待定系数法求得7、A【解析】根据题意,确定角的终边上点的坐标,再利用三角函数定义,即可求解,得到答案【详解】由题意,点在角的终边上,即,则,由三角函数的定义,可得故选A【点睛】本题主要考查了三角函数的定义的应用,其中解答中确定出角的终边上点的坐标,利用三角函数的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.8、A【解析】根据指数和对数的运算公式得到【详解】=故A正确.故B不正确;故C,D不正确.故答案为A.【点睛】这个题目考查了指数和对数的公式的互化,以及换底公式的应用,较为简单.9、D【解析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【点睛】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x的不等式,属于基础题10、C【解析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【点睛】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查12、(1)(2)【解析】(1)根据,之间的关系,平方后求值即可;(2)利用诱导公式化简后,再根据同角三角函数间关系求解.【小问1详解】∵∴,.【小问2详解】由,可得或(舍),原式,∴原式.13、【解析】结合正弦函数的性质确定参数值.【详解】由图可知,最小正周期,所以,所以.故答案为:.【点睛】本题考查由三角函数图象确定其解析式,掌握正弦函数的图象与性质是解题关键.14、【解析】由题意结合指数的运算法则和对数的运算法则整理计算即可求得最终结果.【详解】原式=3+-2=.故答案为点睛】本题考查了指数与对数运算性质,考查了推理能力与计算能力,属于基础题15、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.16、【解析】利用根式性质与对数运算进行化简.【详解】,故答案为:6三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)先求得函数的解析式,再整体代入法去求函数单调递增区间即可;(2)依据函数的单调性及零点个数列不等式组即可求得实数b的取值范围.【小问1详解】由,可得又函数的图象关于直线x=对称,则,则故由,可得则函数的单调递增区间为【小问2详解】由(1)可知当时,,由得,由得则函数在上单调递增,在上单调递减,由函数有且只有一个零点,可得或,解得或18、(1)(2)【解析】(1)根据同角三角函数的关系,平方化简可得,计算即可得答案.(2)由题意得,可得或,根据的范围,可求得的值,代入即可得答案.【小问1详解】由,可得所以,即,所以【小问2详解】由,可得,解得或,而,所以,解得,所以19、(1)详见解析(2)2【解析】(1)证线面平行则需在面中找一线与已知线平行即可,也可通过证明面面平行得到线面平行(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.由体积关系可得试题解析:(1)设是的中点,分别在中使用三角形的中位线定理得.又是平面内的相交直线,∴平面平面.又平面,∴平面.(2)∵,,,∴,∴.∵是直棱柱,∴棱柱的高为,∴棱柱的体积为.∴.20、(1)见解析;(2)见解析.【解析】(1)根据线面平行的判定定理可证明平面;(2)根据面面垂直的判定定理即可证明平面平面.【详解】(1)证明:连结,在中,,分别是,的中点,为的中位线,.在,,分别是,的中点,是的中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论