版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省吉林市第一中学2026届高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.两圆和的位置关系是A.相离 B.相交C.内切 D.外切2.对于函数定义域中任意的,,当时,总有①;②都成立,则满足条件的函数可以是()A. B.C. D.3.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角4.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为5.函数的零点一定位于区间()A. B.C. D.6.若幂函数f(x)的图象过点(16,8),则f(x)<f(x2)的解集为A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)7.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位8.某几何体的三视图如图所示,则该几何的体积为A.16+8 B.8+8C.16+16 D.8+169.第24届冬季奥林匹克运动会,将于2022年2月4日~2月20日在北京和张家口联合举行.为了更好地安排志愿者工作,现需要了解每个志愿者掌握的外语情况,已知志愿者小明只会德、法、日、英四门外语中的一门.甲说,小明不会法语,也不会日语:乙说,小明会英语或法语;丙说,小明会德语.已知三人中只有一人说对了,由此可推断小明掌握的外语是()A.德语 B.法语C.日语 D.英语10.半径为,圆心角为的弧长为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对数函数(且)的图象经过点,则此函数的解析式________12.已知定义在上的奇函数,当时,,当时,________13.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____14.的值为______.15.已知圆,则过点且与圆C相切的直线方程为_____16.若在幂函数的图象上,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数,若在定义域内存在实数,满足,则称函数为“局部中心函数”.(1)已知二次函数,试判断是否为“局部中心函数”.并说明理由;(2)若是定义域为R上的“局部中心函数”,求实数m的取值范围.18.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.19.如图,在正方体中,、分别为、的中点,与交于点.求证:(1);(2)平面平面.20.给定函数,,,用表示,中的较大者,记为.(1)求函数的解析式并画出其图象;(2)对于任意的,不等式恒成立,求实数的取值范围.21.已知函数(1)若的定义域为R,求a的取值范围;(2)若对恒成立,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】依题意,圆的圆坐标为,半径为,圆的标准方程为,其圆心坐标为,半径为,两圆心的距离,且两圆相交,故选B.2、B【解析】根据函数在上是增函数,且是上凸函数判断.【详解】由当时,总有,得函数在上是增函数,由,得函数是上凸函数,在上是增函数是增函数,是下凸函数,故A错误;在上是增函数是增函数,是上凸函数,故B正确;在上是增函数,是下凸函数;故C错误;在上是减函数,故D错误.故选:B3、D【解析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.4、B【解析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.5、C【解析】根据零点存在性定理,若在区间有零点,则,逐一检验选项,即可得答案.【详解】由题意得为连续函数,且在单调递增,,,,根据零点存在性定理,,所以零点一定位于区间.故选:C6、D【解析】先根据幂函数f(x)的图象过点(16,8)求出α=>0,再根据幂函数的单调性得到0<x<x2,解不等式即得不等式的解集.【详解】设幂函数的解析式是f(x)=xα,将点(16,8)代入解析式得16α=8,解得α=>0,故函数f(x)在定义域是[0,+∞),故f(x)在[0,+∞)递增,故,解得x>1.故选D【点睛】(1)本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)幂函数在是增函数,,幂函数在是减函数,且以两条坐标轴为渐近线.7、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题8、A【解析】由已知中的三视图可得该几何体是一个半圆柱和正方体的组合体,半圆柱底面半径为2,故半圆柱的底面积半圆柱的高故半圆柱的体积为,长方体的长宽高分别为故长方体的体积为故该几何体的体积为,选A考点:三视图,几何体的体积9、B【解析】根据题意,分“甲说对,乙、丙说错”、“乙说对,甲、丙说错”、“丙说对,甲、乙说错”三种情况进行分析,即可得到结果.【详解】若甲说对,乙、丙说错:甲说对,小明不会法语也不会日语;乙说错,则小明不会英语也不会法语;丙说错,则小明不会德语,由此可知,小明四门外语都不会,不符合题意;若乙说对,甲、丙说错:乙说对,则小明会英活或法语;甲说错,则小明会法语或日语;丙说错,小明不会德语;则小明会法语;若丙说对,甲、乙说错:丙说对,则小明会德语;甲说错,到小明会法语或日语;乙说错,则小明不会英语也不会法语;则小明会德语或日语,不符合题意;综上,小明会法语.故选:B.10、D【解析】利用弧长公式即可得出【详解】解:,弧长cm故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】将点的坐标代入函数解析式,求出的值,由此可得出所求函数的解析式.【详解】由已知条件可得,可得,因为且,所以,.因此,所求函数解析式为.故答案为:.12、【解析】设,则,代入解析式得;再由定义在上的奇函数,即可求得答案.【详解】不妨设,则,所以,又因为定义在上的奇函数,所以,所以,即.故答案为:.13、23【解析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.14、【解析】利用对数恒等式直接求解.【详解】解:由对数恒等式知:=2故答案为2.【点睛】本题考查指数式、对数式化简求值,对数恒等式公式的合理运用,属于基础题.15、【解析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【点睛】本题考查了过圆上的点的求圆的切线方程,属于容易题.16、27【解析】由在幂函数的图象上,利用待定系数法求出幂函数的解析式,再计算的值【详解】设幂函数,,因为函数图象过点,则,,幂函数,,故答案为27【点睛】本题主要考查了幂函数的定义与解析式,意在考查对基础知识的掌握情况,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)函数为“局部中心函数”,理由见解析;(2).【解析】(1)判断是否为“局部中心函数”,即判断方程是否有解,若有解,则说明是“局部中心函数”,否则说明不是“局部中心函数”;(2)条件是定义域为上的“局部中心函数”可转化为方程有解,再利用整体思路得出结果.【详解】解:(1)由题意,(),所以,,当时,解得:,由于,所以,所以为“局部中心函数”.(2)因为是定义域为上的“局部中心函数”,所以方程有解,即在上有解,整理得:,令,,故题意转化为在上有解,设函数,当时,在上有解,即,解得:;当时,则需要满足才能使在上有解,解得:,综上:,即实数m的取值范围.18、(1)(2)【解析】(1)由可得的值,根据正弦函数可得最值,再根据最值对应关系可得方程组,解得、的值;(2)根据正弦函数单调性可得不等式,解不等式可得函数单调区间.试题解析:(1)由函数最小正周期为,得,∴.又的最大值是,最小值是,则解得(2)由(1)知,,当,即时,单调递增,∴的单调递增区间为.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.19、(1)证明见解析(2)证明见解析【解析】(1)证明出四边形为平行四边形,可证得结论成立;(2)证明出平面,平面,利用面面平行的判定定理可证得结论成立.【小问1详解】证明:在正方体中,且,因为、分别为、的中点,则且,所以,四边形为平行四边形,则.【小问2详解】证明:因为四边形为正方形,,则为的中点,因为为中点,则,平面,平面,所以,平面,因为,平面,平面,所以,平面,因为,因此,平面平面.20、(1),作图见解析;(2).【解析】(1)根据题意,分类讨论,结合一元二次不等式的解法进行求解并画出图象即可;(2)构造新函数,利用分类讨论思想,结合二次函数的性质进行求解即可.【小问1详解】①当即时,,则,②当即或时,,则,故图象如下:【小问2详解】由(1)得,当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职舞蹈表演(古典舞表演)试题及答案
- 2025年高职数字媒体艺术设计(交互媒体创作)试题及答案
- 2025年中职轨道交通运营服务(轨道交通基础)试题及答案
- 2025年大学风景园林(花艺景观应用)试题及答案
- 2025年大学数字媒体(交互设计)试题及答案
- 巴厘岛介绍教学课件
- 中国银行培训课件资源库
- 《红香蕉高产栽培技术规程》(征求意见稿)编制说明
- 养老院老人疾病预防制度
- 养老院老人文化活动管理制度
- 乡间的小路男声合唱简谱
- 04S519小型排水构筑物(含隔油池)图集
- JT-T 1448-2022 公路隧道用射流风机
- MBD技术应用课件
- 汽车修理厂经营方案
- 对现行高中地理新教材理解上的几点困惑与思考 论文
- 重庆市丰都县2023-2024学年七年级上学期期末数学试题
- 美术教学中的跨学科教学策略
- mc尼龙浇铸工艺
- 灯谜大全及答案1000个
- 老年健康与医养结合服务管理
评论
0/150
提交评论