2026届安徽省滁州市来安中学高一上数学期末统考模拟试题含解析_第1页
2026届安徽省滁州市来安中学高一上数学期末统考模拟试题含解析_第2页
2026届安徽省滁州市来安中学高一上数学期末统考模拟试题含解析_第3页
2026届安徽省滁州市来安中学高一上数学期末统考模拟试题含解析_第4页
2026届安徽省滁州市来安中学高一上数学期末统考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届安徽省滁州市来安中学高一上数学期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知M,N都是实数,则“”是“”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要2.如图所示,正方体中,分别为棱的中点,则在平面内与平面平行的直线A.不存在 B.有1条C.有2条 D.有无数条3.如图,正方体的棱长为,,是线段上的两个动点,且,则下列结论错误的是A.B.直线、所成的角为定值C.∥平面D.三棱锥的体积为定值4.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度5.已知函数,则的值为A. B.C. D.6.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.7.表示不超过实数的最大整数,是方程的根,则()A. B.C. D.8.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数9.已知在△ABC中,cos=-,那么sin+cosA=()A. B.-C. D.10.函数的一个零点在区间内,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图象关于原点对称,则__________12.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鱼的科学家发现大西洋鲑鱼的游速(单位:)可以表示为,其中表示鱼的耗氧量的单位数.当一条大西洋鲑鱼的耗氧量的单位数是其静止时耗氧量的单位数的倍时,它的游速是________13.已知,则的最小值为_______________.14.已知扇形的弧长为2cm,圆心角为1rad,则扇形的面积为______.15.制造一种零件,甲机床的正品率为,乙机床的正品率为.从它们制造的产品中各任抽1件,则两件都是正品的概率是__________16.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)证明为奇函数;(2)若在上为单调函数,当时,关于的方程:在区间上有唯一实数解,求的取值范围.18.已知为锐角,(1)求的值;(2)求的值19.已知函数(1)求函数的最小正周期、单调区间;(2)求函数在区间上的最小值和最大值.20.某新型企业为获得更大利润,须不断加大投资,若预计年利润低于10%时,则该企业就考虑转型,下表显示的是某企业几年来利润y(百万元)与年投资成本x(百万元)变化的一组数据:年份2015201620172018投资成本35917…年利润1234…给出以下3个函数模型:①;②(,且);③(,且).(1)选择一个恰当的函数模型来描述x,y之间的关系,并求出其解析式;(2)试判断该企业年利润不低于6百万元时,该企业是否要考虑转型.21.已知函数为奇函数.(1)求的值;(2)探究在上的单调性,并用函数单调性的定义证明你的结论.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】用定义法进行判断.【详解】充分性:取,满足.但是无意义,所以充分性不满足;必要性:当成立时,则有,所以.所以必要性满足.故选:B2、D【解析】根据已知可得平面与平面相交,两平面必有唯一的交线,则在平面内与交线平行的直线都与平面平行,即可得出结论.【详解】平面与平面有公共点,由公理3知平面与平面必有过的交线,在平面内与平行的直线有无数条,且它们都不在平面内,由线面平行的判定定理可知它们都与平面平行.故选:D.【点睛】本题考查平面的基本性质、线面平行的判定,熟练掌握公理、定理是解题的关键,属于基础题.3、B【解析】在A中,∵正方体∴AC⊥BD,AC⊥,∵BD∩=B,∴AC⊥平面,∵BF⊂平面,∴AC⊥BF,故A正确;在B中,异面直线AE、BF所成的角不为定值,因为当F与重合时,令上底面顶点为O,点E与O重合,则此时两异面直线所成的角是;当E与重合时,此时点F与O重合,则两异面直线所成的角是,此二角不相等,故异面直线AE、BF所成的角不为定值.故B错误在C中,∵EF∥BD,BD⊂平面ABCD,EF⊄平面ABCD,∴EF∥平面ABCD,故C正确;在D中,∵AC⊥平面,∴A到平面BEF的距离不变,∵B到EF的距离为1,,∴△BEF的面积不变,∴三棱锥A-BEF的体积为定值,故D正确;点睛:解决此类题型的关键是结合空间点线面的位置关系一一检验.4、D【解析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.5、C【解析】由,故选C6、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法7、B【解析】先求出函数的零点的范围,进而判断的范围,即可求出.【详解】由题意可知是的零点,易知函数是(0,)上的单调递增函数,而,,即所以,结合性质,可知.故选B.【点睛】本题考查了函数的零点问题,属于基础题8、B【解析】根据含全称量词的命题的否定求解.【详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B9、B【解析】因为cos=-,即cos=-,所以sin=-,则sin+cosA=sinAcos+cosAsin+cosA=sin=-.故选B.10、C【解析】根据零点存在定理得出,代入可得选项.【详解】由题可知:函数单调递增,若一个零点在区间内,则需:,即,解得,故选:C.【点睛】本题考查零点存在定理,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据余弦型函数的对称性可得出结果.【详解】函数的图象关于原点对称,则.故答案为:.12、【解析】设大西洋鲑鱼静止时的耗氧量为,计算出的值,再将代入,即可得解.【详解】设大西洋鲑鱼静止时的耗氧量为,则,可得,将代入可得.故答案为:.13、##225【解析】利用基本不等式中“1”的妙用即可求解.【详解】解:因为,所以,当且仅当,即时等号成立,所以的最小值为.故答案为:.14、2【解析】首先由扇形的弧长与圆心角求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:因为扇形的弧长为2cm,圆心角为1rad,所以扇形的半径cm,所以扇形的面积;故答案为:15、【解析】由独立事件的乘法公式求解即可.【详解】由独立事件的乘法公式可知,两件都是正品的概率是.故答案为:16、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)先求函数的定义域,再根据的关系可证明奇偶性;(2)根据单调性及奇函数性质,有,再通过换元,转化为二次函数,通过区间分类讨论可求解.【小问1详解】对任意的,,则对任意的恒成立,所以,函数的定义域为,∴,∴,故函数为奇函数;【小问2详解】∵函数为奇函数且在上的单调函数,∴由可得,其中,设,则,则.∵则,若关于的方程在上只有一个实根,则或.所以,令,其中.所以,函数在时单调递增.①若函数在内有且只有一个零点,在内无零点.则,解得;②若为函数的唯一零点,则,解得,∵,则.且当时,设函数的另一个零点为,则,可得,符合题意.综上所述,实数的取值范围是.18、(1);(2).【解析】(1)根据题中条件,求出,,再由两角差的余弦公式,求出,根据二倍角公式,即可求出结果;(2)由(1)求出,,再由两角差的正切公式,即可求出结果.【详解】(1),为锐角,且,,则,,,,;(2)由(1),所以,则,又,,;.19、(1),增区间是,减区间是(2),【解析】(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;(2)求出x∈[,]时2x的取值范围,从而求得f(x)的最大最小值【详解】(1)函数f(x)cos(2x)中,它的最小正周期为Tπ,令﹣π+2kπ≤2x2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调增区间为[kπ,kπ],k∈Z;令2kπ≤2xπ+2kπ,k∈Z,解得kπ≤xkπ,k∈Z,所以f(x)的单调减区间为[kπ,kπ],k∈Z;(2)x∈[,]时,2x≤π,所以2x;令2x,解得x,此时f(x)取得最小值为f()()=﹣1;令2x0,解得x,此时f(x)取得最大值为f()1【点睛】本题考查了三角函数的图象与性质的应用问题,熟记单调区间是关键,是基础题20、(1)可用③来描述x,y之间的关系,(2)该企业要考虑转型.【解析】(1)由年利润是随着投资成本的递增而递增,可知①不符合,把,分别代入②③,求出函数解析式,再把代入所求的解析式中,若,则选择此模型;(2)由题知,则x>65,再由与比较,可作出判断.【小问1详解】由表格中的数据可知,年利润是随着投资成本的递增而递增,而①是单调递减,所以不符合题意;将,代入(,且),得,解得,∴.当时,,不符合题意;将,代入(,且),得,解得,∴.当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论