2026届甘肃省武威六中高二上数学期末复习检测模拟试题含解析_第1页
2026届甘肃省武威六中高二上数学期末复习检测模拟试题含解析_第2页
2026届甘肃省武威六中高二上数学期末复习检测模拟试题含解析_第3页
2026届甘肃省武威六中高二上数学期末复习检测模拟试题含解析_第4页
2026届甘肃省武威六中高二上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届甘肃省武威六中高二上数学期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若关于x的不等式的解集为,则关于x的不等式的解集是()A. B.,或C.,或 D.,或,或2.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是3.如图所示,过抛物线的焦点F的直线依次交抛物线及准线于点A,B,C.若,且,则抛物线的方程为()A. B.C. D.4.设P是抛物线上的一个动点,F为抛物线的焦点.若,则的最小值为()A. B.C.4 D.55.某校高二年级统计了参加课外兴趣小组的学生人数,每人只参加一类,数据如下表:学科类别文学新闻经济政治人数400300100200若从参加课外兴趣小组的学生中采用分层抽样的方法抽取50名参加学习需求的问卷调查,则从文学、新闻、经济、政治四类兴趣小组中抽取的学生人数分别为()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,106.已知函数的导数为,且满足,则()A. B.C. D.7.已知抛物线内一点,过点的直线交抛物线于,两点,且点为弦的中点,则直线的方程为()A. B.C D.8.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.29.记等比数列的前项和为,若,,则()A.12 B.18C.21 D.2710.已知,是椭圆的两焦点,是椭圆上任一点,从引外角平分线的垂线,垂足为,则点的轨迹为()A.圆 B.两个圆C.椭圆 D.两个椭圆11.已知椭圆的右焦点为,则正数的值是()A.3 B.4C.9 D.2112.设等比数列的前项和为,若,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________14.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现同时从甲、乙两口袋中各任取一个球交换放入对方口袋,共进行了2次这样的操作后,甲口袋中恰有2个黑球的概率为__________________.15.已知过点作抛物线的两条切线,切点分别为A,B,直线AB经过抛物线C的焦点F,则___________16.若复数z=为纯虚数(),则|z|=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:18.(12分)已知函数.(1)当时,求的极值;(2)当时,,求a的取值范围.19.(12分)在中,a,b,c分别是内角A,B,C的对边,满足.(1)求A;(2)若,求面积的最大值.20.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)21.(12分)如图,在正方体中,E为的中点(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值22.(10分)已知等比数列的公比,且,的等差中项为,.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】先利用已知一元二次不等式的解集求得参数,再代入所求不等式,利用分式大于零,则分子分母同号,列不等式计算即得结果.【详解】不等式解集为,即的二根是1和2,利用根和系数的关系可知,故不等式即转化成,即,等价于或者,解得或,或者.故解集为,或,或.故选:D.【点睛】分式不等式的解法:(1)先化简成右边为零的形式(或),等价于一元二次不等式(或)再求解即可;(2)先化简成右边为零的形式(或),再利用分子分母同号(或者异号),列不等式组求解即可.2、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.3、A【解析】分别过点作准线的垂线,分别交准线于点,,设,推出;根据,进而推导出,结合抛物线定义求出;最后由相似比推导出,即可求出抛物线的方程.【详解】如图分别过点作准线的垂线,分别交准线于点,,设与交于点.设,,,由抛物线定义得:,故在直角三角形中,,,,,,,∥,,,即,,所以抛物线的方程为.故选:A4、C【解析】作出图形,过点作抛物线准线的垂线,由抛物线的定义得,从而得出,再由、、三点共线时,取最小值得解.【详解】,所以在抛物线的内部,过点作抛物线准线的垂线,由抛物线的定义得,,当且仅当、、三点共线时,等号成立,因此,的最小值为.故选:C.5、D【解析】利用分层抽样的等比例性质求抽取的样本中所含各小组的人数.【详解】根据分层抽样的等比例性质知:文学小组抽取人数为人;新闻小组抽取人数为人;经济小组抽取人数为人;政治小组抽取人数为人;故选:D.6、C【解析】首先求出,再令即可求解.【详解】由,则,令,则,所以.故选:C【点睛】本题主要考查了基本初等函数的导数以及导数的基本运算法则,属于基础题.7、B【解析】利用点差法求出直线斜率,即可得出直线方程.【详解】设,则,两式相减得,即,则直线方程为,即.故选:B.8、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.9、C【解析】根据等比数列的性质,可知等比数列的公比,所以成等比数列,根据等比的中项性质即可求出结果.【详解】因为为等比数列的前项和,且,,易知等比数列的公比,所以成等比数列所以,所以,解得.故选:C10、A【解析】设的延长线交的延长线于点,由椭圆性质推导出,由题意知是△的中位线,从而得到点的轨迹是以为圆心,以为半径的圆【详解】是焦点为、的椭圆上一点为的外角平分线,,设的延长线交的延长线于点,如图,,,,由题意知是△的中位线,,点的轨迹是以为圆心,以为半径的圆故选:A11、A【解析】由直接可得.【详解】由题知,所以,因为,所以.故选:A12、C【解析】利用等比数列前项和的性质,,,,成等比数列求解.【详解】解:因为数列为等比数列,则,,成等比数列,设,则,则,故,所以,得到,所以.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、30【解析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和频率,即可得答案.【详解】因为频率分布直方图中所以小矩形面积和为1,所以,解得,所以分数在内的人数为.故答案为:3014、【解析】分两类:两次都互相交换白球的概率和第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率求和可得答案.【详解】分两类:①两次都互相交换白球的概率为;②第一次甲交出黑球收到白球,且第二次甲交出白球收到黑球的概率为.故答案为:.15、【解析】设出点的坐标,与抛物线方程联立,结合题意和韦达定理,求得抛物线的方程为,直线AB的方程为,进而求得的值.【详解】设,在抛物线,过切点A与抛物线相切的直线的斜率为,则以为切点的切线方程为,联立方程组,整理得,则,整理得,所以,解得,所以以为切点的切线方程为,即,同理,设,在抛物线,过切点B与抛物线相切的直线,又因为在切线和,所以,所以直线AB的方程为,又直线AB过抛物线的焦点,所以令,可得,即,所以抛物线的方程为,直线AB的方程为,联立方程组,整理得或,所以,所以.故答案为:.16、【解析】利用复数z=为纯虚数求出a,即可求出|z|.【详解】z=.由纯虚数的定义知,,解得.所以.故|z|=.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.18、(1)极大值,没有极小值(2)【解析】(1)把代入,然后对函数求导,结合导数可求函数单调区间,即可得解;(2)构造函数,将不等式的恒成立转化为函数的最值问题,结合导数与单调性及函数的性质对进行分类讨论,其中当和时易判断函数的单调性以及最小值,而当时,的最小值与0进一步判断【小问1详解】当时,的定义域为,.当时,,当时,,所以在上为增函数,在上为减函数.故有极大值,没有极小值.【小问2详解】当时,恒成立等价于对于任意恒成立.令,则.若,则,所以在上单调递减,所以,符合题意.若,所以在上单调递减,,符合题意.若,当时,,当时,,所以在上单调递减,在上单调递增,所以,不合题意.综上可知,a的取值范围为.【点睛】关键点点睛:本题考查了不等式恒成立问题,其关键是构造函数,通过讨论参数在不同取值范围时函数的单调性,求出函数的最值,解出参数的范围.必要时二次求导.19、(1)(2)【解析】(1)由正弦定理得,再由范围可得答案;(2)由余弦定理和基本不等式可得,再由面积公式可得答案.【小问1详解】∵,由正弦定理得,又,所以,又,则;【小问2详解】由余弦定理得,即,所以,当且仅当,取“=”,所以面积的最大值为20、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.21、(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)证明出四边形为平行四边形,可得出,然后利用线面平行的判定定理可证得结论;也可利用空间向量计算证明;(Ⅱ)可以将平面扩展,将线面角转化,利用几何方法作出线面角,然后计算;也可以建立空间直角坐标系,利用空间向量计算求解.【详解】(Ⅰ)[方法一]:几何法如下图所示:在正方体中,且,且,且,所以,四边形为平行四边形,则,平面,平面,平面;[方法二]:空间向量坐标法以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,设正方体的棱长为,则、、、,,,设平面的法向量为,由,得,令,则,,则.又∵向量,,又平面,平面;(Ⅱ)[方法一]:几何法延长到,使得,连接,交于,又∵,∴四边形为平行四边形,∴,又∵,∴,所以平面即平面,连接,作,垂足为,连接,∵平面,平面,∴,又∵,∴直线平面,又∵直线平面,∴平面平面,∴在平面中的射影在直线上,∴直线为直线在平面中的射影,∠为直线与平面所成的角,根据直线直线,可知∠为直线与平面所成的角.设正方体的棱长为2,则,,∴,∴,∴,即直线与平面所成角的正弦值为.[方法二]:向量法接续(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直线与平面所成角的正弦值为.[方法三]:几何法+体积法如图,设的中点为F,延长,易证三线交于一点P因为,所以直线与平面所成的角,即直线与平面所成的角设正方体的棱长为2,在中,易得,可得由,得,整理得所以所以直线与平面所成角的正弦值为[方法四]:纯体积法设正方体的棱长为2,点到平面的距离为h,在中,,,所以,易得由,得,解得,设直线与平面所成的角为,所以【整体点评】(Ⅰ)的方法一使用线面平行的判定定理证明,方法二使用空间向量坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论