版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙南名校联盟2026届高一数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.方程的解所在区间是()A. B.C. D.2.如图中,分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线是异面直线的图形有()A.①③ B.②③C.②④ D.②③④3.若,则错误的是A. B.C. D.4.设,是两个不同的平面,,是两条不同的直线,且,A.若,则 B.若,则C.若,则 D.若,则5.已知函数,若不等式对任意的均成立,则的取值不可能是()A. B.C. D.6.已知,则()A. B.C. D.7.已知函数,则()A.3 B.2C.1 D.08.集合中所含元素为A.0,1 B.,1C.,0 D.19.已知函数在上单调递减,则的取值范围为()A. B.C. D.10.下列关于集合的关系式正确的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知平面向量,,若,则______12.已知函数的最大值为,且图像的两条相邻对称轴之间的距离为,求:(1)函数的解析式;(2)当,求函数的单调递减区间13.已知函数且(1)若函数在区间上恒有意义,求实数的取值范围;(2)是否存在实数,使得函数在区间上为增函数,且最大值为?若存在,求出的值;若不存在,请说明理由14.计算:__________15.已知,,,则___________.16.在矩形ABCD中,AB=2,AD=1.设①当时,t=___________;②若,则t的最大值是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,为常数.(1)求函数的最小正周期及对称中心;(2)若时,的最小值为-2,求的值18.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.19.已知函数的最小值正周期是(1)求的值;(2)求函数的最大值,并且求使取得最大值的x的集合20.如图,在平行四边形中,设,.(1)用向量,表示向量,;(2)若,求证:.21.已知圆和定点,由圆外一动点向圆引切线,切点为,且满足.(1)求证:动点在定直线上;(2)求线段长的最小值并写出此时点的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.2、C【解析】对于①③可证出,两条直线平行一定共面,即可判断直线与共面;对于②④可证三点共面,但平面;三点共面,但平面,即可判断直线与异面.【详解】由题意,可知题图①中,,因此直线与共面;题图②中,三点共面,但平面,因此直线与异面;题图③中,连接,则,因此直线与共面;题图④中,连接,三点共面,但平面,所以直线与异面.故选C.【点睛】本题主要考查异面直线的定义,属于基础题.3、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D4、A【解析】由面面垂直的判定定理:如果一个平面经过另一平面的一条垂线,则两面垂直,可得,可得考点:空间线面平行垂直的判定与性质5、D【解析】根据奇偶性定义和单调性的性质可得到的奇偶性和单调性,由此将恒成立的不等式化为,通过求解的最大值,可知,由此得到结果.【详解】,是定义在上的奇函数,又,为增函数,为减函数,为增函数.由得:,,整理得:,,,,的取值不可能是.故选:D.【点睛】方法点睛:本题考查利用函数单调性和奇偶性求解函数不等式的问题,解决此类问题中,奇偶性和单调性的作用如下:(1)奇偶性:统一不等式两侧符号,同时根据奇偶函数的对称性确定对称区间的单调性;(2)单调性:将函数值的大小关系转化为自变量之间的大小关系.6、C【解析】因为,所以;因为,,所以,所以.选C7、B【解析】先求值,再计算即可.【详解】,,故选:B点睛】本题主要考查了分段函数求函数值,属于基础题.8、A【解析】,解,得,故选9、C【解析】可分析单调递减,即将题目转化为在上单调递增,分别讨论与的情况,进而求解【详解】由题可知单调递减,因为在上单调递减,则在上单调递增,当时,在上单调递减,不符合题意,舍去;当时,,解得,即故选C【点睛】本题考查对数函数的单调性的应用,考查复合函数单调性问题,考查解不等式10、A【解析】因为{0}是含有一个元素的集合,所以{0}≠,故B不正确;元素与集合间不能划等号,故C不正确;显然相等,故D不正确.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出,根据,即,进行数量积的坐标运算,列出方程,即可求解【详解】由题意知,平面向量,,则;因为,所以,解得故答案为【点睛】本题主要考查了向量的坐标运算,以及向量的数量积的应用,其中解答中根据平面向量垂直的条件,得到关于的方程是解答的关键,着重考查了运算与求解能力,属于基础题.12、(1);(2)和【解析】(1)根据降幂公式与辅助角公式化简函数解析式,然后由题意求解,从而求解出解析式;(2)根据(1)中的解析式,利用整体法代入化简计算函数的单调减区间,再由,给赋值,求出单调减区间.【小问1详解】化简函数解析式得,因为图像的两条相邻对称轴之间的距离为,即,且函数最大值为,所以且,得,所以函数解析式为.【小问2详解】由(1)得,,得,因为,所以函数的单调减区间为和13、(1)(2)存在;(或)【解析】(1)由题意,得在上恒成立,参变分离得恒成立,再令新函数,判断函数的单调性,求解最大值,从而求出的取值范围;(2)在(1)的条件下,讨论与两种情况,利用复合函数同增异减的性质求解对应的取值范围,再利用最大值求解参数,并判断是否能取到.【小问1详解】由题意,在上恒成立,即在恒成立,令,则在上恒成立,令所以函数在在上单调递减,故则,即的取值范围为.【小问2详解】要使函数在区间上为增函数,首先在区间上恒有意义,于是由(1)可得,①当时,要使函数在区间上为增函数,则函数在上恒正且为增函数,故且,即,此时的最大值为即,满足题意②当时,要使函数在区间上为增函数,则函数在上恒正且为减函数,故且,即,此时的最大值为即,满足题意综上,存在(或)【点睛】一般关于不等式在给定区间上恒成立的问题都可转化为最值问题,参变分离后得恒成立,等价于;恒成立,等价于成立.14、【解析】.故答案为.点睛:(1)任何非零实数的零次幂等于1;(2)当,则;(3).15、【解析】由已知条件结合所给角的范围求出、,再将展开即可求解【详解】因为,所以,又因为,所以,所以,因为,,所以,因为,所以,所以,故答案为:.【点睛】关键点点睛:本题解题的关键点是由已知角的三角函数值的符号确定角的范围进而可求角的正弦或余弦,将所求的角用已知角表示即.16、①.0②.【解析】利用坐标法可得,结合条件及完全平方数的最值即得.【详解】由题可建立平面直角坐标系,则,∴,∴,∴当时,,因为,要使t最大,可取,即时,t取得最大值是.故答案为:0;.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期.对称中心为:,.(2)【解析】(1)根据周期和对称轴公式直接求解;(2)先根据定义域求的范围,再求函数的最小值,求参数的值.【详解】(1)∵,∴的最小正周期令,,解得,,∴的对称中心为:,.(2)当时,,故当时,函数取得最小值,即,∴取得最小值为,∴【点睛】本题考查的基本性质,意在考查基本公式和基本性质,属于基础题型.18、(1),;(2)证明见解析;(3)1347.【解析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【详解】(1)根据题意,由,则,;(2)由于集合,,且,所以中也只包含四个元素,即,剩下的,所以;(3)设满足题意,其中,则,∴,,∴,∵,由容斥原理,中最小的元素为0,最大的元素为,∴,∴,∴,实际上当时满足题意,证明如下:设,则,,依题意有,即,故的最小值为674,于是当时,中元素最多,即时满足题意,综上所述,集合中元素的个数的最大值是1347.【点睛】关键点点睛:第三问集合中元素的个数最多时,应满足中的最大值小于中的最小值,另外容斥原理的应用也是解题的关键.19、(1);(2)最大值为,此时.【解析】(1)利用二倍角公式以及辅助角公式可得,再由即可求解.(2)由(1)知,,令,即可求解.【详解】(1)由题设,函数的最小正周期是,可得,所以;(2)由(1)知,当,即时,取得最大值1,所以函数的最大值为20、(1),.(2)证明见解析【解析】(1)根据向量的运算法则,即可求得向量,;(2)由,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冀北公司培训课件
- 深度对话活动策划方案(3篇)
- 煤矿汽车电子衡管理制度(3篇)
- 生产部门垃圾管理制度(3篇)
- 秦皇岛小学军事管理制度(3篇)
- 纳税服务标签化管理制度(3篇)
- 职业学校闭环管理制度(3篇)
- 落实干部培训管理制度(3篇)
- 连锁店供销管理制度(3篇)
- 《电子电路分析与应用》课件任务2调光台灯的制作
- 食品生产余料管理制度
- 2026年中国航空传媒有限责任公司市场化人才招聘备考题库有答案详解
- 2026年《全科》住院医师规范化培训结业理论考试题库及答案
- 2026北京大兴初二上学期期末语文试卷和答案
- 专题23 广东省深圳市高三一模语文试题(学生版)
- 2026年时事政治测试题库100道含完整答案(必刷)
- 重力式挡土墙施工安全措施
- 葫芦岛事业单位笔试真题2025年附答案
- 2026年公平竞争审查知识竞赛考试题库及答案(一)
- 置业顾问2025年度工作总结及2026年工作计划
- 金华市轨道交通控股集团有限公司招聘笔试题库2026
评论
0/150
提交评论