版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉市华大新2026届数学高二上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆:,圆:,则两圆的位置关系为()A.外离 B.外切C.相交 D.内切2.《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法.在如图所示的羡除中,平面是铅垂面,下宽,上宽,深,平面BDEC是水平面,末端宽,无深,长(直线到的距离),则该羡除的体积为()A. B.C. D.3.已知锐角的内角A,B,C的对边分别为a,b,c,若向量,,,则的最小值为()A. B.C. D.4.若关于一元二次不等式的解集为,则实数的取值范围是()A. B.C. D.5.已知,是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大值为36,则球的表面积为()A. B.C. D.6.有一组样本数据、、、,由这组数据得到新样本数据、、、,其中,为非零常数,则()A.两组样本数据的样本平均数相同 B.两组样本数据的样本标准差相同C.两组样本数据的样本中位数相同 D.两组样本数据的样本众数相同7.已知椭圆与椭圆,则下列结论正确的是()A.长轴长相等 B.短轴长相等C.焦距相等 D.离心率相等8.一个盒子里有3个分别标有号码为1,2,3小球,每次取出一个,记下它的标号后再放回盒子中,共取2次,则在两次取得小球中,标号最大值是3的概率为()A. B.C. D.9.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”10.已知函数,若对任意,都有成立,则a的取值范围为()A. B.C. D.11.已知动直线的倾斜角的取值范围是,则实数m的取值范围是()A. B.C. D.12.在中,角A,B,C的对边分别为a,b,c.若,,则的形状为()A.直角三角形 B.等边三角形C.等腰直角三角形 D.等腰或直角三角形二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的公差为1,且是和的等比中项,则前10项的和为___________.14.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)15.已知满足的双曲线(a,b>0,c为半焦距)为黄金双曲线,则黄金双曲线的离心率为______16.已知数列满足下列条件:①数列是等比数列;②数列是单调递增数列;③数列的公比满足.请写出一个符合条件的数列的通项公式__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)写出下列命题的否定,并判断它们的真假:(1):任意两个等边三角形都是相似的;(2):,.18.(12分)已知定点,动点与连线的斜率之积.(1)设动点的轨迹为,求的方程;(2)若是上关于轴对称的两个不同点,直线与轴分别交于点.试判断以为直径的圆是否过定点,如经过,求出定点坐标;如不过定点,请说明理由.19.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点20.(12分)已知函数(1)当时,求函数的单调区间;(2)当时,若关于x的不等式恒成立,试求a的取值范围21.(12分)如图,在四棱锥中,平面,是等边三角形.(1)证明:平面平面.(2)求点到平面的距离.22.(10分)在平面直角坐标系中,已知点在椭圆上,其中为椭圆E的离心率(1)求b的值;(2)A,B分别为椭圆E的左右顶点,过点的直线l与椭圆E相交于M,N两点,直线与交于点T,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出两圆的圆心和半径,根据圆心距与半径和与差的关系,判断圆与圆的位置关系【详解】圆:的圆心为,半径,圆:,即,圆心,半径,两圆的圆心距,显然,即,所以圆与圆相交.故选:C2、C【解析】在,上分别取点,,使得,连接,,,把几何体分割成一个三棱柱和一个四棱锥,然后由棱柱、棱锥体积公式计算【详解】如图,在,上分别取点,,使得,连接,,,则三棱柱是斜三棱柱,该羡除的体积三棱柱四棱锥.故选:C【点睛】思路点睛:本题考查求空间几何体的体积,解题思路是观察几何体的结构特征,合理分割,将不规则几何体体积的计算转化为锥体、柱体体积的计算.考查了空间想象能力、逻辑思维能力、运算求解能力3、C【解析】由,得到,根据正弦、余弦定理定理化简得到,化简得到,再结合基本不等式,即可求解.【详解】由题意,向量,,因为,所以,可得,由正弦定理得,整理得,又由余弦定理,可得,因为,所以,由,所以,因为是锐角三角形,且,可得,解得,所以,所以,当且仅当,即时等号成立,故的最小值为.故选:C4、B【解析】结合判别式求得的取值范围.【详解】由于关于的一元二次不等式的解集为,所以,解得,所以实数的取值范围是.故选:B5、C【解析】当平面时,三棱锥体积最大,根据棱长与球半径关系即可求出球半径,从而求出表面积.【详解】当平面时,三棱锥体积最大.又,则三棱锥体积,解得;故表面积.故选:C.【点睛】关键点点睛:本题考查三棱锥与球的组合体的综合问题,本题的关键是判断当平面时,三棱锥体积最大.6、B【解析】利用平均数公式可判断A选项;利用标准差公式可判断B选项;利用中位数的定义可判断C选项;利用众数的定义可判断D选项.【详解】对于A选项,设数据、、、的平均数为,数据、、、的平均数为,则,A错;对于B选项,设数据、、、的标准差为,数据、、、的标准差为,,B对;对于C选项,设数据、、、中位数为,数据、、、的中位数为,不妨设,则,若为奇数,则,;若为偶数,则,.综上,,C错;对于D选项,设数据、、、的众数为,则数据、、、的众数为,D错.故选:B.7、C【解析】利用,可得且,即可得出结论【详解】∵,且,椭圆与椭圆的关系是有相等的焦距故选:C8、C【解析】求出两次取球都没有取到3的概率,再利用对立事件的概率公式计算作答.【详解】依题意,每次取到标号为3的球的事件为A,则,且每次取球是相互独立的,在两次取得小球中,标号最大值是3的事件M,其对立事件是两次都没有取到标号为3的球的事件,,则有,所以在两次取得小球中,标号最大值是3的概率为.故选:C9、A【解析】由,而,故由独立性检验的意义可知选A10、C【解析】求出函数的导数,再对给定不等式等价变形,分离参数借助均值不等式计算作答.【详解】对函数求导得:,,,则,,而,当且仅当,即时“=”,于是得,解得,所以a的取值范围为.故选:C【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,利用函数思想是解决问题的关键.11、B【解析】根据倾斜角与斜率的关系可得,即可求m的范围.【详解】由题设知:直线斜率范围为,即,可得.故选:B.12、B【解析】直接利用正弦定理以及已知条件,求出、、的关系,即可判断三角形的形状【详解】解:在中,已知,,,分别为角,,的对边),由正弦定理可知:,所以,解得,所以为等边三角形故选:【点睛】本题考查三角形的形状的判断,正弦定理的应用,考查计算能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用等比中项及等差数列通项公式求出首项,再利用等差数列的前项和公式求出前10项的和.【详解】设等差数列的首项为,由已知条件得,即,,解得,则.故答案为:.14、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答15、##【解析】根据题设及双曲线离心率公式可得,结合双曲线离心率的性质即可求离心率.【详解】由题设,,整理得:,所以,而,故.故答案为:.16、(答案不唯一)【解析】根据题意判断数列特征,写出一个符合题意的数列的通项公式即可.【详解】因为数列是等比数列,数列是单调递增数列,数列公比满足,所以等比数列公比,且各项均为负数,符合题意的一个数列的通项公式为.故答案为:(答案不唯一)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)存在两个等边三角形不是相似的,假命题(2),真命题【解析】根据全称命题与存在性命题的关系,准确改写,即可求解.【小问1详解】解:命题“任意两个等边三角形都是相似的”是一个全称命题根据全称命题与存在性命题的关系,可得其否定“存在两个等边三角形不是相似的”,命题为假命题.【小问2详解】解:根据全称命题与存在性命题关系,可得:命题的否定为.因为,所以命题为真命题.18、(1);(2)以为直径的圆过定点,定点坐标为和.【解析】(1)设动点的坐标,利用斜率坐标公式结合已知列式即可作答.(2)设上任意一点,求出点M,N的坐标,再求出以为直径的圆的方程即可分析作答.【小问1详解】设点,则直线PA,PB的斜率分别为:,,依题意,,化简整理得:,所以的方程是:.【小问2详解】由(1)知,令是上任意一点,则点,直线:,则点,直线:,则点,以MN为直径的圆上任意一点,当点Q与M,N都不重合时,,有,当点Q与M,N之一重合时,也成立,因此,以MN为直径的圆的方程为:,化简整理得:,而,即,则以MN为直径的圆的方程化为:,显然当时,恒有,即圆恒过两个定点和,所以以为直径的圆过定点,定点坐标为和.【点睛】知识点睛:以点为直径两个端点的圆的方程是:.19、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.20、(1)的减区间为,增区间为(2)【解析】(1)利用导数求得的单调区间.(2)利用分离参数法,结合构造函数法以及导数求得的取值范围.【小问1详解】当时,,,所以在区间递减;在区间递增.所以的减区间为,增区间为.【小问2详解】,恒成立.构造函数,,,构造函数,,所以在上递增,,所以在上成立,所以,所以,即的取值范围是.21、(1)证明见解析;(2).【解析】(1)根据等边三角形的性质、线面垂直的性质,结合面面垂直的判定定理进行证明即可;(2)利用余弦定理,结合三棱锥的等积性进行求解即可.【小问1详解】证明:设,因为是等边三角形,且,所以是的中点,则.又,所以,所以,即.又平面平面,所以.又,所以平面.因为平面,所以平面平面.【小问2详解】解:因为,所以.在中,,所以,则又平面,所以.如图,连接,则,所以.设点到平面的距离为,因为,所以,解得,即点到平面的距离为.22、(1)1(2)证明见解析【解析】(1)根据点在椭圆E上建立方程,结合,然后解出方程即可;(2)联立直线与椭圆的方程,表示出直线与,求得交点的坐标,再分别表示出直线和的斜率并作差,通过韦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名师工作室成员个人工作总结
- 水库大坝安全监测管理系统建设方案
- 2025年幼儿教师招聘考试真题试卷含答案
- 2025数字化技术继续教育公需课题库(参考答案)
- 2025年中学教师资格证《综合素质》考试真题及答案(完整版)
- 2025年针灸科工作总结及计划
- 坡屋面挂瓦合成树脂瓦技术交底
- 求职服务员面试技巧
- 建设工程施工合同纠纷要素式起诉状模板填写灵活便捷
- 2026校招:重庆对外经贸集团笔试题及答案
- DBJ04∕T 398-2019 电动汽车充电基础设施技术标准
- 供应链管理工作计划与目标
- (正式版)JBT 9229-2024 剪叉式升降工作平台
- 湖北省荆州市八县市2023-2024学年高二上学期期末考试物理试卷
- GB/T 15231-2023玻璃纤维增强水泥性能试验方法
- ESC2023年心脏起搏器和心脏再同步治疗指南解读
- 五年级上册道德与法治期末测试卷推荐
- 超额利润激励
- GB/T 2624.1-2006用安装在圆形截面管道中的差压装置测量满管流体流量第1部分:一般原理和要求
- 兰渝铁路指导性施工组织设计
- CJJ82-2019-园林绿化工程施工及验收规范
评论
0/150
提交评论