2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题含解析_第1页
2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题含解析_第2页
2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题含解析_第3页
2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题含解析_第4页
2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖北省“荆、荆、襄、宜四地七校考试联盟”数学高一上期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于函数有下述四个结论:①是偶函数;②在区间单调递减;③在有个零点;④的最大值为.其中所有正确结论的编号是()A.①②④ B.②④C.①④ D.①③2.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年3.已知命题“,使”是假命题,则实数的取值范围是()A. B.C. D.4.已知集合,集合与的关系如图所示,则集合可能是()A. B.C. D.5.若函数是定义在上的偶函数,则()A.1 B.3C.5 D.76.点从点出发,按逆时针方向沿周长为的平面图形运动一周,,两点连线的距离与点走过的路程的函数关系如图所示,则点所走的图形可能是A. B.C. D.7.已知正数、满足,则的最小值为A. B.C. D.8.如图所示,已知全集,集合,则图中阴影部分表示的集合为()A. B.C. D.9.在下列函数中,同时满足:①在上单调递增;②最小正周期为的是()A. B.C. D.10.已知集合,则()A. B.或C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则________.(用m,n表示)12.函数的最大值为().13.若函数是定义在上的严格增函数,且对一切x,满足,则不等式的解集为___________.14.已知命题“∀x∈R,e x≥a”15.正实数a,b,c满足a+2-a=2,b+3b=3,c+=4,则实数a,b,c之间的大小关系为_________.16.已知是锐角,且sin=,sin=_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数是奇函数(1)求,的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的范围18.已知.(1)若能表示成一个奇函数和一个偶函数的和,求和的解析式;(2)若和在区间上都是减函数,求的取值范围;(3)在(2)的条件下,比较和的大小.19.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.20.已知函数(1)求函数的最小正周期;(2)求函数的对称轴和对称中心;(3)若,,求的值21.已知平面向量.(1)求与的夹角的余弦值;(2)若向量与互相垂直,求实数的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用偶函数的定义可判断出命题①的正误;去绝对值,利用余弦函数的单调性可判断出命题②的正误;求出函数在区间上的零点个数,并利用偶函数的性质可判断出命题③的正误;由取最大值知,然后去绝对值,即可判断出命题④的正误.【详解】对于命题①,函数的定义域为,且,则函数为偶函数,命题①为真命题;对于命题②,当时,,则,此时,函数在区间上单调递减,命题②正确;对于命题③,当时,,则,当时,,则,由偶函数的性质可知,当时,,则函数在上有无数个零点,命题③错误;对于命题④,若函数取最大值时,,则,,当时,函数取最大值,命题④正确.因此,正确的命题序号为①②④.故选A.【点睛】本题考查与余弦函数基本性质相关的命题真假的判断,解题时要结合自变量的取值范围去绝对值,结合余弦函数的基本性质进行判断,考查推理能力,属于中等题.2、B【解析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B3、B【解析】原命题等价于恒成立,故即可,解出不等式即可.【详解】因为命题“,使”是假命题,所以恒成立,所以,解得,故实数的取值范围是故选:B4、D【解析】由图可得,由选项即可判断.【详解】解:由图可知:,,由选项可知:,故选:D.5、C【解析】先根据偶函数求出a、b的值,得到解析式,代入直接求解.【详解】因为偶函数的定义域关于原点对称,则,解得.又偶函数不含奇次项,所以,即,所以,所以.故选:C6、C【解析】认真观察函数图像,根据运动特点,采用排除法解决.【详解】由函数关系式可知当点P运动到图形周长一半时O,P两点连线的距离最大,可以排除选项A,D,对选项B正方形的图像关于对角线对称,所以距离与点走过的路程的函数图像应该关于对称,由图可知不满足题意故排除选项B,故选C【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力7、B【解析】由得,再将代数式与相乘,利用基本不等式可求出的最小值【详解】,所以,,则,所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题8、A【解析】根据文氏图表示的集合求得正确答案.【详解】文氏图表示集合为,所以.故选:A9、C【解析】根据题意,结合余弦、正切函数图像性质,一一判断即可.【详解】对于选项AD,结合正切函数图象可知,和的最小正周期都为,故AD错误;对于选项B,结合余弦函数图象可知,在上单调递减,故B错误;对于选项C,结合正切函数图象可知,在上单调递增,且最小正周期,故C正确.故选:C.10、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据指数式与对数式的互化,以及对数的运算性质,准确运算,即可求解.【详解】因为,,所以,,所以,可得.故答案为:12、【解析】利用可求最大值.【详解】因为,即,,取到最小值;所以函数的最大值为.故答案为:.【点睛】本题主要考查三角函数的最值问题,借助正弦函数的值域能方便求解,侧重考查数学抽象的核心素养.13、【解析】根据题意,将问题转化为,,再根据单调性解不等式即可得答案.【详解】解:因为函数对一切x,满足,所以,,令,则,即,所以等价于,因为函数是定义在上的严格增函数,所以,解得所以不等式的解集为故答案为:14、a≤0【解析】根据∀x∈R,e x≥a成立,【详解】因为∀x∈R,e所以e 则a≤0,故答案为:a≤015、##【解析】利用指数的性质及已知条件求a、b的范围,讨论c的取值范围,结合对数的性质求c的范围【详解】由,由,又,当时,,显然不成立;当时,,不成立;当时,;综上,.故答案为:16、【解析】由诱导公式可求解.【详解】由,而.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析;(3).【解析】(1)根据奇函数定义,利用且,列出关于、的方程组并解之得;(2)根据函数单调性的定义,任取实数、,通过作差因式分解可证出:当时,,即得函数在上为减函数;(3)根据函数的单调性和奇偶性,将不等式转化为:对任意的都成立,结合二次函数的图象与性质,可得的取值范围【详解】解:(1)为上的奇函数,,可得又(1),解之得经检验当且时,,满足是奇函数.(2)由(1)得,任取实数、,且则,可得,且,即,函数在上为减函数;(3)根据(1)(2)知,函数是奇函数且在上为减函数不等式恒成立,即也就是:对任意的都成立变量分离,得对任意的都成立,,当时有最小值为,即的范围是【点睛】本题以含有指数式的分式函数为例,研究了函数的单调性和奇偶性,并且用之解关于的不等式,考查了基本初等函数的简单性质及其应用,属于中档题18、(1)(2)(3)【解析】(1)根据函数奇偶性的定义可得出关于和的等式组,即可解得函数和的解析式;(2)利用已知条件求得;(3)化简的表达式,令,分析关于的函数在上的单调性,由此可得出与的大小.【小问1详解】由已知可得,,,所以,,,解得.即.【小问2详解】函数在区间上是减函数,则,解得,又由函数在区间上是减函数,得,则且,所以.【小问3详解】由(2),令,因为函数和在上为增函数,故函数在上为增函数,所以,,而,所以,即.19、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等价条件以及夹角公式即可求解.【详解】解:(1)由已知,得,所以,所以.(2)因为,所以.所以,即,所以.又,所以,即与的夹角为.【点睛】主要考查向量模、夹角的求解,数量积的计算以及向量垂直的等价条件的运用.属于基础题.20、(1);(2),;(3)【解析】(1)利用三角函数的恒等变换,对函数的表达式进行化简,进而可以求出周期;(2)利用正弦函数对称轴与对称中心的性质,可以求出函数的对称轴和对称中心;(3)利用题中给的关系式可以求出和,然后将展开求值即可【详解】(1).所以函数的最小正周期.(2)由于,令,,得,故函数的对称轴为.令,,得,故函数的对称中心为.(3)因为,所以,即,因为,所以,则,,所以.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论