2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题含解析_第1页
2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题含解析_第2页
2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题含解析_第3页
2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题含解析_第4页
2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届河南省新乡市第七中学高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为等差数列,若,则()A.1 B.2C.3 D.42.已知数列的通项公式为,且数列是递增数列,则实数的取值范围是()A. B.C. D.3.已知椭圆+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若AB的中点坐标为(1,-1),则E的方程为A.+=1 B.+=1C.+=1 D.+=14.已知实数,满足则的最大值为()A.-1 B.0C.1 D.25.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.506.已知奇函数,则的解集为()A. B.C. D.7.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.38.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.9.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.310.椭圆离心率是()A. B.C. D.11.已知等比数列的前n项和为,且满足公比0<q<1,<0,则下列说法不正确的是()A.一定单调递减 B.一定单调递增C.式子-≥0恒成立 D.可能满足=,且k≠112.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的渐近线与圆相切,则该双曲线的实轴长为______14.已知双曲线,则圆的圆心C到双曲线渐近线的距离为______15.已知正三棱柱中,底面积为,一个侧面的周长为,则正三棱柱外接球的表面积为______.16.若正实数满足则的最小值为________________________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆.(1)求过点M(2,1)的圆的切线方程;(2)直线过点且被圆截得的弦长为2,求直线的方程;(3)已知圆的圆心在直线y=1上,与y轴相切,且与圆相外切,求圆的标准方程.18.(12分)已知椭圆上顶点与椭圆的左,右顶点连线的斜率之积为(1)求椭圆C的离心率;(2)若直线与椭圆C相交于A,B两点,,求椭圆C的标准方程19.(12分)已知数列是等差数列,(1)求的通项公式;(2)求的最大项20.(12分)已知椭圆C:的左、右焦点分别为F1、F2,上顶点为A,△AF1F2的周长为6,离心率等于.(1)求椭圆C的标准方程;(2)过点(4,0)的直线l交椭圆C于M、N两点,且OM⊥ON,求直线l的方程.21.(12分)已知椭圆的焦距为,左、右焦点分别为,为椭圆上一点,且轴,,为垂足,为坐标原点,且(1)求椭圆的标准方程;(2)过椭圆的右焦点的直线(斜率不为)与椭圆交于两点,为轴正半轴上一点,且,求点的坐标22.(10分)已知数列为等差数列,,数列满足,且(1)求的通项公式;(2)设,记数列的前项和为,求证:

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D2、C【解析】利用递增数列的定义即可.【详解】由,∴,即是小于2n+1的最小值,∴,故选:C3、D【解析】设、,所以,运用点差法,所以直线的斜率为,设直线方程为,联立直线与椭圆的方程,所以;又因为,解得.【考点定位】本题考查直线与圆锥曲线的关系,考查学生的化归与转化能力.4、D【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数,即可得到结果【详解】由约束条件画出可行域如图,化目标函数为,由图可知当直线过点时,直线在轴上的截距最小,取得最大值2.故选:D5、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A6、A【解析】先由求出的值,进而可得的解析式,对求导,利用基本不等式可判断恒成立,可判断的单调性,根据单调性脱掉,再解不等式即可.【详解】的定义域为,因为是奇函数,所以,可得:,所以,经检验是奇函数,符合题意,所以,因为,所以,当且仅当即时等号成立,所以在上单调递增,由可得,即,解得:或,所以的解集为,故选:A.7、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.8、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B9、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A10、C【解析】将方程转化为椭圆的标准方程,求得a,c,再由离心率公式求得答案.【详解】解:由得,所以,则,所以椭圆的离心率,故选:C.11、D【解析】根据等比数列的通项公式,前n项和的意义,可逐项分析求解.【详解】因为等比数列的前n项和为,且满足公比0<q<1,<0,所以当时,由可得,故数列为增函数,故B正确;由0<q<1,<0知,所以,故一定单调递减,故A正确;因为当时,,,所以,即-,当时,,综上,故C正确;若=,且k≠1,则,即,因为,故,故矛盾,所以D不正确.故选:D12、A【解析】设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线方程写出渐近线,根据相切关系,结合点线距离公式求参数a,即可确定实轴长.【详解】由题设,渐近线方程为,且圆心为,半径为1,所以,由相切关系知:,可得,又,即,所以双曲线的实轴长为.故答案为:14、2【解析】求出圆心和双曲线的渐近线方程,即得解.【详解】解:由题得圆的圆心为,双曲线的渐近线方程为,即.所以圆心到双曲线渐近线的距离为.故答案为:215、【解析】首先由条件求出底面边长和高,然后设、分别为上、下底面的的中心,连接,设的中点为,则点为正三棱柱外接球的球心,然后求出的长度即可.【详解】如图所示,设底面边长为,则底面面积为,所以,因此等边三角形的高为:,因为一个侧面的周长为,所以设、分别为上、下底面的的中心,连接,设的中点为则点为正三棱柱外接球的球心,连接、则在直角三角形中,即外接球的半径为,所以外接球的表面积为,故答案为:【点睛】关键点睛:求几何体的外接球半径的关键是根据几何体的性质找出球心的位置.16、【解析】利用基本不等式即可求解.【详解】,,又,,,当且仅当即,等号成立,.故答案为:【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)y=1;(2)x+y-2=0;(3).【解析】(1)将圆的一般方程化为圆的标准方程,结合图形即可求出结果;(2)根据题意可知直线过圆心,利用直线的两点式方程计算即可得出结果;(3)设圆E的圆心E(a,1),根据题意可得圆E的半径为,结合圆与圆的位置关系和两点距离公式计算求出,进而得出圆的标准方程.【小问1详解】圆,即,其圆心为,半径为1.因为点(2,1)在圆上,如图,所以切线方程为y=1;【小问2详解】由题意得,圆的直径为2,所以直线过圆心,由直线的两点式方程,得,即直线的方程为x+y-2=0;【小问3详解】因为圆E的圆心在直线y=1上,设圆E的圆心E(a,1),由圆E与y轴相切,得R=a()又圆E与圆相外切,所以,由两点距离公式得,所以,解得,所以圆心,,所以圆E的方程为.18、(1)(2)【解析】(1)根据题意,可知,可得,再根据椭圆的性质可得,由此即可求出离心率;(2)将直线与椭圆方程联立,由韦达定理得到,,再根据弦长公式,建立方程,即可求出的值,进而求出椭圆方程.【小问1详解】解:由题意可知,椭圆上顶点坐标为,左右顶点的坐标分别为、,∴,即,则又,∴,所以椭圆的离心率;【小问2详解】解:设,,由得:,∴,,,∴,解得,∴,满足,∴,∴椭圆C的方程为19、(1);(2).【解析】(1)利用等差数列的通项公式进行求解即可;(2)运用二次函数的性质进行求解即可.【小问1详解】设等差数列的公差为,所以有,所以;【小问2详解】由(1)可知:,当时,有最大项,最大项为:.20、(1);(2)或.【解析】(1)由条件得,再结合,可求得椭圆方程;(2)由题意设直线l:x=my+4,设M(x1,y1),N(x2,y2),直线方程与椭圆方程联立方程组,消去,整理后利用根与系的关系可得,,再由OM⊥ON,可得x1x2+y1y2=0,从而可列出关于的方程,进而可求出的值,即可得到直线的方程【详解】(1)由条件知,解得,则故椭圆的方程为(2)显然直线l的斜率存在,且斜率不为0,设直线l:x=my+4交椭圆C于M(x1,y1),N(x2,y2),由,当=(24m)2-4(3m2+4)×36>0时,有,,由条件OM⊥ON可得,,即x1x2+y1y2=0,从而有(my1+4)(my2+4)+y1y2=0,(m2+1)y1y2+4m(y1+y2)+16=0,,解得,故且满足>0从而直线l方程为或21、(1)(2)【解析】(1)利用△∽△构造齐次方程,求出离心率,再利用焦距即可求出椭圆方程;(2)将直线方程与椭圆方程联立利用韦达定理求出和,利用几何关系可知,即可得,将韦达定理代入化简即可求得点坐标.【小问1详解】∵椭圆的焦距为,∴,即,轴,∴,则,由,,则△∽△,∴,即,整理得,即,解得或(舍去)∴,∴,则椭圆的标准方程为,【小问2详解】设直线的方程为,且,将直线方程与椭圆方程联立得,,则,,∵,∴,∴,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论