版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建省莆田市第八中学高二数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“若,都是偶数,则也是偶数”的逆否命题是A.若是偶数,则与不都是偶数B.若是偶数,则与都不是偶数C.若不是偶数,则与不都是偶数D.若不是偶数,则与都不是偶数2.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B.C. D.3.已知数列满足,其前项和为,,.若数列的前项和为,则满足成立的的最小值为()A.10 B.11C.12 D.134.在中,角A,B,C所对的边分别为a,b,c,已知,则的面积为()A. B.C. D.5.在等差数列中,,,则的值是()A.130 B.260C.156 D.1686.已知抛物线,则其焦点到准线的距离为()A. B.C.1 D.47.双曲线的焦点坐标是()A. B.C. D.8.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.9.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.10.下列直线中,与直线垂直的是()A. B.C. D.11.已知数列中,其前项和为,且满足,数列的前项和为,若对恒成立,则实数的值可以是()A. B.2C.3 D.12.不等式的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则正整数___________.14.在数列中,,,则数列中最大项的数值为__________15.函数y=x3+ax2+bx+a2在x=1处有极值10,则a=________.16.在空间直角坐标系中,已知,,,,则___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,为坐标原点,曲线上点都在轴及其右侧,且曲线上的任一点到轴的距离比它到圆的圆心的距离小1(1)求曲线的方程;(2)已知过点的直线交曲线于点,若,求面积18.(12分)已知椭圆的离心率为,且点在C上.(1)求椭圆C的标准方程;(2)设,为椭圆C的左,右焦点,过右焦点的直线l交椭圆C于A,B两点,若内切圆的半径为,求直线l的方程.19.(12分)已知为等差数列,是各项均为正数的等比数列的前n项和,,,,在①;②;③.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择的第一个解答计分)(1)求数列和的通项公式;(2)求数列的前n项和.20.(12分)已知椭圆的离心率为,点在椭圆上,直线与交于,两点(1)求椭圆的方程及焦点坐标;(2)若线段的垂直平分线经过点,求的取值范围21.(12分)设,已知函数(1)若,求函数在处切线的方程;(2)求函数在上的最大值22.(10分)已知函数(1)求的单调区间;(2)若,求的最大值与最小值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】命题的逆否命题是将条件和结论对换后分别否定,因此“若都是偶数,则也是偶数”的逆否命题是若不是偶数,则与不都是偶数考点:四种命题2、A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题3、A【解析】根据题意和对数的运算公式可证得为以2为首项,2为公比的等比数列,求出,进而得到,利用裂项相消法求得,再解不等式即可.【详解】由,又,所以数列是以2为首项,2为公比的等比数列,故,则,所以,由,得,即,有,又,所以,即n的最小值为10.故选:A4、A【解析】由余弦定理计算求得角,根据三角形面积公式计算即可得出结果.【详解】由余弦定理得,,∴,∴,故选:A5、A【解析】由等差数列的性质计算得到,进而利用求和公式,变形求出答案.【详解】由题意得:,故故选:A6、B【解析】化简抛物线的方程为,求得,即为焦点到准线的距离.【详解】由题意,抛物线,即,解得,即焦点到准线的距离是故选:B7、B【解析】根据双曲线的方程,求得,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线,可得,所以,且双曲线的焦点再轴上,所以双曲线的焦点坐标为.故选:B.8、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A9、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.10、C【解析】,,若,则,项,符合条件,故选11、D【解析】由求出,从而可以求,再根据已知条件不等式恒成立,可以进行适当放大即可.【详解】若n=1,则,故;若,则由得,故,所以,,又因为对恒成立,当时,则恒成立,当时,,所以,,,若n为奇数,则;若n为偶数,则,所以所以,对恒成立,必须满足.故选:D12、A【解析】根据一元二次不等式的解法进行求解即可.【详解】,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、6【解析】根据组合数和排列数的运算即可求得答案.【详解】由题意,,得.故答案为:6.14、【解析】用累加法求出通项,再由通项表达式确定最大项.【详解】当时,,所以数列中最大项的数值为故答案为:15、4【解析】∵y′=3x2+2ax+b,∴或当a=-3,b=3时,y′=3x2-6x+3=3(x-1)2≥0恒成立,故舍去.所以a=416、或##或【解析】根据向量平行时坐标的关系和向量的模公式即可求解.【详解】,且,设,,解得,或.故答案为:或.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意直接列或根据抛物线的定义求轨迹方程(2)待定系数法设直线方程,联立直线与抛物线方程,根据抛物线的定义,利用韦达定理解出直线方程,再求面积【小问1详解】解法1:配方法可得圆的方程为,即圆的圆心为,设的坐标为,由已知可得,化简得,曲线的方程为解法2:配方可得圆的方程为,即圆的圆心为,由题意可得上任意一点到直线的距离等于该点到圆心的距离,由抛物线的定义可得知,点的轨迹为以点为焦点的抛物线,所以曲线的方程为【小问2详解】抛物线的焦点为,准线方程为,由,可得的斜率存在,设为,,过的直线的方程为,与抛物线的方程联立,可得,设,的横坐标分别为,,可得,,由抛物线的定义可得,解得,即直线的方程为,可得到直线的距离为,,所以的面积为18、(1)(2)或.【解析】(1)根据离心率可得的关系,再将的坐标代入方程后可求,从而可得椭圆的方程.(2)设直线的方程为,,结合内切圆的半径为可得,联立直线方程和椭圆方程,消元后结合韦达定理可得关于的方程,求出其解后可得直线方程.【小问1详解】因为椭圆的离心率为,故可设,故椭圆方程为,代入得,故,故椭圆方程为:.【小问2详解】的周长为,故.设,由题设可得直线与轴不重合,故可设直线,则,由可得,整理得到,此时,故,解得,故直线的方程为:或.19、(1)无论选择哪个条件答案均为;(2).【解析】(1)先根据题设条件求解,然后根据选择的条件求解;(2)先求,然后利用分组求和的方法求解.【小问1详解】设的公差为,因为,;所以,解得,所以.选①:设的公比为,则;由题意得,因为,所以,解得或(舍);所以.选②:由,当时,,因为,所以;当时,,整理得;即是首项和公比均为2的等比数列,所以.选③:因为,,所以,解得;所以.【小问2详解】由(1)得;所以.20、(1),(2)【解析】(1)由题意,列出关于a,b,c的方程组求解即可得答案;(2)设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),则,作差可得①,又线段MN的垂直平分线过点A(0,1),则②,联立直线MN与椭圆的方程,可得﹣t2+1+4k2>0(*),③,由①②③及(*)式联立即可求解【小问1详解】解:由题意可得,解得,所以椭圆C的方程为,焦点坐标为【小问2详解】解:设M(x1,y1),N(x2,y2),线段MN的中点(x0,y0),因为,所以,即,所以①,因为线段MN的垂直平分线过点A(0,1),所以,即②,联立,得(1+4k2)x2+8ktx+4t2﹣4=0,所以=(8kt)2﹣4(1+4k2)(4t2﹣4)=﹣16t2+16+64k2>0,即﹣t2+1+4k2>0(*),③,把③代入②,得④,把③④代入①得,所以,即,代入(*)得,解得,又k≠0,所以k的取值范围为21、(1)(2)当0≤a<2时,f(x)max=8-5a;当a≥2时,f(x)max=-a【解析】(1)根据导数的几何意义即可求解;(2)先求函数的导数,令导数等于零,求得两极值点,然后讨论极值点是否在所给区间内,再结合比较区间端点处的函数值的大小,可得答案.【小问1详解】因为,所以,即a=0,所以,f(1)=1,所以切线方程:y-1=3(x-1),即.【小问2详解】,令得,①当a=0时,f(x)=x3在[0,2]上为单调递增函数,所以f(x)max=f(2)=8;②当时,即a≥3时,f(x)在[0,2]上为单调递减函数,所以;③当时,即0<a<3时,f(x)在上单调递减,在单调递增,所以f(x)=max{f(0),f(2)},(i)若f(0)≥f(2),即2≤a<3,f(x)max=f(0)=-a,(ii)若f(0)<f(2),即0<a<2,f(x)max=f(2)=8-5a;综上,当0≤a<2时,f(x)max=f(2)=8-5a;当a≥2时,f(x)max=f(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化工企业环保基本知识课件
- 飞蛾饲养技术培训课件
- 2026山东滨州市市属事业单位招聘备考考试试题及答案解析
- 2026四川成都东部新区芦霞卫生院编外人员招聘3人参考考试题库及答案解析
- 2026贵州贵阳礼物旅游产业发展有限公司招聘1人笔试备考试题及答案解析
- 2026中国农业科学院农业经济与发展研究所乡村发展研究室编制外科研助理招聘1人参考考试题库及答案解析
- 电气-接地-施工方案(3篇)
- 2026山东淄博桓台县面向退役大学生士兵专项岗位招聘考试参考试题及答案解析
- 2026广东佛山顺德区杏坛镇林文恩中学招聘临聘教师4人备考考试试题及答案解析
- 2026江苏连云港兴榆创业投资有限公司对外招聘岗位开考情况说明笔试备考题库及答案解析
- 南京医科大学2026年招聘人事代理人员备考题库及1套参考答案详解
- 2026年教育平台资源输出协议
- 【《四旋翼飞行器坐标系及相互转换关系分析综述》1000字】
- 2026浙江金华市婺城区城市发展控股集团有限公司招聘59人笔试参考题库及答案解析
- 静脉补液课件
- 广东深圳市盐田高级中学2024~2025学年高一上册1月期末考试化学试题 附答案
- 2026年辅警招聘考试试题库附答案【完整版】
- 浙江省《检验检测机构技术负责人授权签字人》考试题及答案
- 建筑施工风险辨识与防范措施
- 浙江省杭州地区六校2026届化学高一第一学期期末学业水平测试试题含解析
- 2025年CFA二级估值与财务报表分析试卷(含答案)
评论
0/150
提交评论