2026届江苏省盐城市东台三仓中学高一上数学期末调研试题含解析_第1页
2026届江苏省盐城市东台三仓中学高一上数学期末调研试题含解析_第2页
2026届江苏省盐城市东台三仓中学高一上数学期末调研试题含解析_第3页
2026届江苏省盐城市东台三仓中学高一上数学期末调研试题含解析_第4页
2026届江苏省盐城市东台三仓中学高一上数学期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届江苏省盐城市东台三仓中学高一上数学期末调研试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知指数函数的图象过点,则()A. B.C.2 D.42.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断3.过点且平行于直线的直线方程为()A. B.C. D.4.若,则的值为()A. B.C. D.5.已知,则A. B.C. D.6.设全集为,集合,,则()A. B.C. D.7.已知是幂函数,且在第一象限内是单调递减,则的值为()A.-3 B.2C.-3或2 D.38.已知函数,则满足的x的取值范围是()A. B.C. D.9.已知全集,集合,,则等于()A. B.C. D.10.实验测得四组(x,y)的值为(1,2),(2,3),(3,4),(4,5),则y与x之间的回归直线方程为()A.B.C.D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.12.关于x的不等式在上恒成立,则实数m的取值范围是______13.已知函数=___________14.函数一段图象如图所示则的解析式为______15.已知扇形半径为8,弧长为12,则中心角为__________弧度,扇形面积是________16.若函数在区间上没有最值,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数是定义域为R的奇函数.(1)求;(2)若,求使不等式对一切恒成立的实数k的取值范围;(3)若函数的图象过点,是否存在正数,使函数在上的最大值为2,若存在,求出a的值;若不存在,请说明理由.18.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围19.自新冠疫情爆发以来,全球遭遇“缺芯”困境,同时以美国为首的西方国家对中国高科技企业进行打压及制裁.在这个艰难的时刻,我国某企业自主研发了一款具有自主知识产权的平板电脑,并从2021年起全面发售.经测算,生产该平板电脑每年需投入固定成本1350万元,每生产x(千台)电脑需要另投成本(万元),且,另外,每台平板电脑售价为0.6万元,假设每年生产的平板电脑能够全部售出.已知2021年共售出10000台平板电脑,企业获得年利润为1650万元(1)求企业获得年利润(万元)关于年产量x(千台)的函数关系式;(2)当年产量为多少(千台)时,企业所获年利润最大?并求最大年利润20.已知函数.(1)证明为奇函数;(2)若在上为单调函数,当时,关于的方程:在区间上有唯一实数解,求的取值范围.21.已知,(1)求的值;(2)求的值;(3)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由指数函数过点代入求出,计算对数值即可.【详解】因为指数函数的图象过点,所以,即,所以,故选:C2、A【解析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A3、A【解析】设直线的方程为,代入点的坐标即得解.【详解】解:设直线的方程为,把点坐标代入直线方程得.所以所求的直线方程为.故选:A4、D【解析】,故选D.5、D【解析】考点:同角间三角函数关系6、B【解析】先求出集合B的补集,再根据集合的交集运算求得答案.【详解】因为,所以,故,故选:B.7、A【解析】根据幂函数的定义判断即可【详解】由是幂函数,知,解得或.∵该函数在第一象限内是单调递减的,∴.故.故选:A.【点睛】本题考查了幂函数的定义以及函数的单调性问题,属于基础题8、D【解析】通过解不等式来求得的取值范围.【详解】依题意,即:或,即:或,解得或.所以的取值范围是.故选:D9、D【解析】先求得集合B的补集,再根据交集运算的定义,即可求得答案.【详解】由题意得:,所以,故选:D10、A【解析】根据所给数据,求出样本中心点,把样本中心点代入所给四个选项中验证,即可得答案【详解】解:由已知可得,所以这组数据的样本中心点为,因样本中心必在回归直线上,所以把样本中心点代入四个选项中验证,可得只有成立,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据给定条件求出扇形所在圆的半径即可计算作答.【详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:12、【解析】对m进行讨论,变形,构造新函数求导,利用单调性求解最值可得实数m的取值范围;【详解】解:由上,;当时,显然也不成立;;可得设,其定义域为R;则,令,可得;当上时,;当上时,;当时;取得最大值为可得,;解得:;故答案为.【点睛】本题考查了导数在判断函数单调性和最值中的应用,属于难题.13、2【解析】,所以点睛:本题考查函数对称性的应用.由题目问题可以猜想为定值,所以只需代入计算,得.函数对称性的问题要大胆猜想,小心求证14、【解析】由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得到函数的解析式【详解】由函数的图象的顶点的纵坐标可得,再由函数的周期性可得,再由五点法作图可得,故函数的解析式为,故答案为【点睛】本题主要考查函数的部分图象求解析式,由函数的最值求出A,由周期求出,由五点法作图求出的值,属于中档题15、.【解析】详解】试题分析:根据弧长公式得,扇形面积考点:弧度制下弧长公式、扇形面积公式的应用16、【解析】根据正弦函数的图像与性质,可求得取最值时的自变量值,由在区间上没有最值可知,进而可知或,解不等式并取的值,即可确定的取值范围.【详解】函数,由正弦函数的图像与性质可知,当取得最值时满足,解得,由题意可知,在区间上没有最值,则,,所以或,因为,解得或,当时,代入可得或,当时,代入可得或,当时,代入可得或,此时无解.综上可得或,即的取值范围为.故答案为:.【点睛】本题考查了正弦函数的图像与性质应用,由三角函数的最值情况求参数,注意解不等式时的特殊值取法,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)根据是定义域为R的奇函数,由求解;(2),得到b的范围,从而得到函数的单调性,将对一切恒成立,转化为对一切恒成立求解;(3)根据函数的图象过点,求得b,得到,令,利用复合函数求最值的方法求解.【小问1详解】解:函数是定义域为R的奇函数,所以,解得,此时,满足;【小问2详解】因为,所以,解得,所以在R上是减函数,等价于,所以,即,又因为不等式对一切恒成立,所以对一切恒成立,所以,解得,所以实数k的取值范围是;【小问3详解】因为函数的图象过点,所以,解得,则,令,则,当时,是减函数,,因为函数在上的最大值为2,所以,即,解得,不成立;当时,是增函数,,因为函数在上最大值为2,所以,即,解得或(舍去),所以存在正数,使函数在上的最大值为2.18、(1)(2)【解析】(1)根据交集的定义,列出关于的不等式组即可求解;(2)由题意,,根据集合的包含关系列出关于的不等式组即可求解;【小问1详解】解:∵或,且,∴,解得,∴a的取值范围为;【小问2详解】解:∵或,且,∴,∴或,即或,∴a的取值范围是.19、(1)(2)当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.【解析】(1)根据2021年共售出10000台平板电板电脑,企业获得年利润为1650万元,求出,进而求出(万元)关于年产量x(千台)的函数关系式;(2)分别求出与所对应的函数关系式的最大值,比较后得到答案.【小问1详解】10000台平板电脑,即10千台,此时,根据题意得:,解得:,故当时,,当时,,综上:;【小问2详解】当时,,当时,取得最大值,;当时,,当且仅当,即时,等号成立,,因为,所以当年产量为100(千台)时,企业所获年利润最大,最大年利润为万元.20、(1)证明见解析(2)【解析】(1)先求函数的定义域,再根据的关系可证明奇偶性;(2)根据单调性及奇函数性质,有,再通过换元,转化为二次函数,通过区间分类讨论可求解.【小问1详解】对任意的,,则对任意的恒成立,所以,函数的定义域为,∴,∴,故函数为奇函数;【小问2详解】∵函数为奇函数且在上的单调函数,∴由可得,其中,设,则,则.∵则,若关于的方程在上只有一个实根,则或.所以,令,其中.所以,函数在时单调递增.①若函数在内有且只有一个零点,在内无零点.则,解得;②若为函数的唯一零点,则,解得,∵,则.且当时,设函数的另一个零点为,则,可得,符合题意.综上所述,实数的取值范围是.21、(1);(2)4;(3).【解析】(1)根据同角函数关系得到正弦值,结合余

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论