福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题含解析_第1页
福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题含解析_第2页
福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题含解析_第3页
福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题含解析_第4页
福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市泉港区一中2026届高二数学第一学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设变量满足约束条件:,则的最小值()A. B.C. D.2.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.3.直线的倾斜角为A. B.C. D.4.设平面的法向量为,平面的法向量为,若,则的值为()A.-5 B.-3C.1 D.75.已知等差数列满足,,数列满足,记数列的前n项和为,若对于任意的,,不等式恒成立,则实数t的取值范围为()A. B.C. D.6.已知函数只有一个零点,则实数的取值范围是()A B.C. D.7.若执行如图所示的程序框图,则输出S的值是()A.18 B.78C.6 D.508.已知某班有学生48人,为了解该班学生视力情况,现将所有学生随机编号,用系统抽样的方法抽取一个容量为4的样本已知3号,15号,39号学生在样本中,则样本中另外一个学生的编号是()A.26 B.27C.28 D.299.已知各项均为正数且单调递减的等比数列满足、、成等差数列.其前项和为,且,则()A. B.C. D.10.已知抛物线上的点到该抛物线焦点的距离为,则抛物线的方程是()A. B.C. D.11.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.12.阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知在平面直角坐标系中,椭圆的面积为,两焦点与短轴的一个端点构成等边三角形,则椭圆的标准方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某学生到某工厂进行劳动实践,利用打印技术制作模型.如图,该模型为一个大圆柱中挖去一个小圆柱后的剩余部分(两个圆柱底面圆的圆心重合),大圆柱的轴截面是边长为的正方形,小圆柱的侧面积是大圆柱侧面积的一半,打印所用原料的密度为,不考虑打印损耗,制作该模型所需原料的质量为________g.(取)14.若圆与圆相交,则的取值范围是__________.15.在公差不为0的等差数列中,为其前n项和,若,则正整数______16.已知长方体中,,,则点到平面的距离为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求18.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率19.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值20.(12分)椭圆C:的左右焦点分别为,,P为椭圆C上一点.(1)当P为椭圆C的上顶点时,求的余弦值;(2)直线与椭圆C交于A,B,若,求k21.(12分)已知直线方程为(1)若直线的倾斜角为,求的值;(2)若直线分别与轴、轴的负半轴交于、两点,为坐标原点,求面积的最小值及此时直线的方程22.(10分)已知点,圆,点Q在圆上运动,的垂直平分线交于点P.(1)求动点P的轨迹的方程;(2)过点的动直线l交曲线C于A、B两点,在y轴上是否存在定点T,使以AB为直径的圆恒过这个点?若存在,求出点T的坐标,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】如图作出可行域,知可行域的顶点是A(-2,2)、B()及C(-2,-2),平移,当经过A时,的最小值为-8,故选D.2、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.3、B【解析】分析出直线与轴垂直,据此可得出该直线的倾斜角.【详解】由题意可知,直线与轴垂直,该直线的倾斜角为.故选:B.【点睛】本题考查直线的倾斜角,关键是掌握直线倾斜角的定义,属于基础题4、C【解析】根据,可知向量建立方程求解即可.【详解】由题意根据,可知向量,则有,解得.故选:C5、B【解析】由等差数列基本量法求出通项公式,用裂项相消法求得,求出的最大值,然后利用关于的不等式是一次不等式列出满足的不等关系求得其范围【详解】设等差数列公差为,则由已知得,解得,∴,,∴,易知数列是递增数列,且,∴若对于任意的,,不等式恒成立,即,又,∴,解得或故选:B【点睛】本题考查求等差数列的通项公式,考查裂项相消法求数列的和,考查不等式恒成立问题,解题关键是掌握不等式恒成立问题的转化与化归思想,不等式恒成立首先转化为求数列的单调性与最值,其次转化为一次不等式恒成立6、B【解析】将题目转化为函数的图像与的图像只有一个交点,利用导数研究函数的单调性与极值,作出图像,利用数形结合求出的取值范围.【详解】由函数只有一个零点,等价于函数的图像与的图像只有一个交点,,求导,令,得当时,,函数在上单调递减;当时,,函数在上单调递增;当时,,函数在上单调递减;故当时,函数取得极小值;当时,函数取得极大值;作出函数图像,如图所示,由图可知,实数的取值范围是故选:B【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7、A【解析】根据框图逐项计算后可得正确的选项.【详解】第一次循环前,;第二次循环前,;第三次循环前,;第四次循环前,;第五次循环前,此时满足条件,循环结束,输出S的值是18故选:A8、B【解析】由系统抽样可知抽取一个容量为4的样本时,将48人按顺序平均分为4组,由已知编号可得所求的学生来自第三组,设其编号为,则,进而求解即可【详解】由系统抽样可知,抽取一个容量为4的样本时,将48人分为4组,第一组编号为1号至12号;第二组编号为13号至24号;第三组编号为25号至36号;第四组编号为37号至48号,故所求的学生来自第三组,设其编号为,则,所以,故选:B【点睛】本题考查系统抽样的编号,属于基础题9、C【解析】先根据,,成等差数列以及单调递减,求出公比,再由即可求出,再根据等比数列通项公式以及前项和公式即可求出.【详解】解:由,,成等差数列,得:,设的公比为,则,解得:或,又单调递减,,,解得:,数列的通项公式为:,.故选:C10、B【解析】由抛物线知识得出准线方程,再由点到焦点的距离等于其到准线的距离求出,从而得出方程.【详解】由题意知,则准线为,点到焦点的距离等于其到准线的距离,即,∴,则故选:B.11、C【解析】利用导函数的图象,判断导函数的符号,得到函数的单调性以及函数的极值点,然后判断选项即可【详解】解:由题意可知:和时,,函数是增函数,时,,函数是减函数;是函数的极大值点,是函数的极小值点;所以函数的图象只能是故选:C12、A【解析】由椭圆的面积为和两焦点与短轴的一个端点构成等边三角形,得到求解.【详解】由题意得,解得,所以椭圆的标准方程是.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、4500【解析】根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,再根据小圆柱的侧面积是大圆柱侧面积的一半,求出小圆柱的底面圆的半径,然后求出该模型的体积,从而可得出答案.【详解】解:根据题意可知大圆柱的底面圆的半径,两圆柱的高,设小圆柱的底面圆的半径为,则有,即,解得,所以该模型的体积为,所以制作该模型所需原料的质量为.故答案:4500.14、【解析】根据圆心距小于两半径之和,大于两半径之差的绝对值列出不等式解出即可.【详解】圆的圆心为原点,半径为,圆,即的圆心为,半径为,由于两圆相交,故,即,解得,即的取值范围是,故答案为:15、13【解析】设等差数列公差为d,根据等差数列通项公式、前n项和公式及可求k.【详解】设等差数列公差为d,∵,∴,即,即,∴.故答案为:13.16、##2.4【解析】过作于,可证即为点到平面的距离.【详解】过作于,∵是长方体,∴平面平面,又∵平面平面,∴平面,设点到平面的距离为,∵∥平面,∴根据等面积法得,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.18、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.19、(1);(2).【解析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为20、(1)(2)【解析】(1)利用余弦定理可求顶角的余弦值.(2)联立直线方程和椭圆方程,消元后利用韦达定理结合弦长公式可求的值.【小问1详解】当为椭圆的上顶点时,,在中,由余弦定理知.【小问2详解】设,,将直线与椭圆:联立得:,因为直线过焦点,故恒成立,又,由弦长公式得,化简整理得:,解得.21、(1);(2)面积的最小值为,此时直线的方程为.【解析】(1)由直线的斜率和倾斜角的关系可求得的值;(2)求出点、的坐标,根据已知条件求出的取值范围,求出的面积关于的表达式,利用基本不等式可求得面积的最小值,利用等号成立的条件可求得的值,即可得出直线的方程.【小问1详解】解:由题意可得.【小问2详解】解:在直线的方程中,令可得,即点,令可得,即点,由已知可得,解得,所以,,当且仅当时,等号成立,此时直线的方程为,即.22、(1);(2)存在,T

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论