安徽省合肥四十五中2025~2026学年八年级上册12月月考数学试题【附解析】_第1页
安徽省合肥四十五中2025~2026学年八年级上册12月月考数学试题【附解析】_第2页
安徽省合肥四十五中2025~2026学年八年级上册12月月考数学试题【附解析】_第3页
安徽省合肥四十五中2025~2026学年八年级上册12月月考数学试题【附解析】_第4页
安徽省合肥四十五中2025~2026学年八年级上册12月月考数学试题【附解析】_第5页
已阅读5页,还剩20页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

/安徽省合肥四十五中2025−2026学年八年级上学期12月月考数学试卷一、单选题1.下列常见的运动图标是轴对称图形的是(

)A. B. C. D.2.在中,,则的度数为(

)A.80° B.70° C.60° D.40°3.如图,,,则有()A.是等腰三角形 B.垂直平分C.垂直平分 D.与互相垂直平分4.在如图的房屋人字梁架中,,点在上,下列条件不能说明的是(

)A. B. C. D.平分5.如图,平分是上一点,于点,若,则点与射线上某一点连线的长度可以是(

)A.7 B.8 C.9 D.116.如图,在中,,,延长到点D,连接.若通过尺规作图所得直线恰好经过点C,则的度数为(

)A. B. C. D.7.三条公路将、、三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是()A.三条高线的交点 B.三条中线的交点C.三条角平分线的交点 D.三边垂直平分线的交点8.在中,线段是的角平分线、是边上的中线,垂直于,已知:,则长是()A.4 B.5 C.6 D.79.如图,在等边中,D为边中点,,P是线段上一动点,则的最小值为().A. B.3 C. D.610.如图等边中,点D,E为线段上动点且,连接交于点F,连接,下面结论:①;②;③若,则;④若,则.其中结论正确的有(

)A.1个 B.2个 C.3个 D.4个二、填空题11.如图,直线,等边的顶点C在直线b上,,则为度.12.“三等分角”大约在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒,组成,两根棒在O点相连并可绕O转动,C点固定,,点D,E可在槽中滑动,若,则为度.三、解答题13.如图,在中,平分,于点D,.若,,求的长.四、填空题14.在中,,,点D在边上,和关于直线对称,的平分线交于点G,连接.(1)的度数为;(2)设,当θ为时,为等腰三角形.五、解答题15.如图,在平面直角坐标系中,如图所示.(1)的面积为______;(2)在图中画出关于y轴的对称图形,其中点的坐标为,点的坐标为;(3)点C关于直线对称的点的坐标为______.16.如图,在中,尺规作图:(要求:保留作图痕迹,不写作法)(1)作的平分线交于点D;(2)过点D作,交于点F.17.如图,在中,边的垂直平分线分别交、于点、,边的垂直平分线分别交、于点、.(1)若,求的周长;(2)若,求的度数.18.如图,是的平分线,,点P在上,,,垂足分别是M、N,求证:.19.如图,一艘轮船以20海里/时的速度由西向东航行,早上8时,在A处测得小岛P在北偏东方向上,轮船继续向东航行,早上10点到达B处,并测得小岛在北偏东方向上.(1)求此时轮船与小岛的距离;(2)已知小岛周围21海里内有暗礁,若轮船仍向前航行,有无触礁危险?请说明理由.六、填空题20.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE=AC.∠BAC=75°,则∠B的度数为.七、解答题21.如图,在中,平分,过线段上一点E作,交于点F,交的延长线于点G.(1)求证:是等腰三角形.(2)若,,求的度数.22.如图,在等边中,D是上一点,E是延长线上一点,,交于点F.(1)求证:;(2)过点D作于点H,若,求.23.如图,在中,,过点C作于点D,过点B作于点M,连接,过点D作,交于点N.与相交于点E,若点E是的中点,(1)求证:;(2)求证:;(3).

答案1.【正确答案】A【分析】本题考查了轴对称图形的识别,根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:B,C,D选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,A选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选A.2.【正确答案】B【分析】本题考查了三角形内角和等于180°,等腰三角形的性质,熟练掌握等腰三角形的两个底角相等是解答本题的关键.根据等腰三角形的性质可得到,已知顶角的度数,根据三角形内角和定理即可求解.【详解】∵,∴,∵,∴故选B3.【正确答案】C【分析】本题考查了垂直平分线的判定,根据垂直平分线的判定定理推理,即可解题.【详解】解:,,A、B在的垂直平分线上,即垂直平分(但不一定垂直平分).故选C.4.【正确答案】B【分析】本题考查三线合一,根据三线合一,进行判断即可.【详解】解:当时,∵点在上,∴,∴,∴;故选项A不符合题意;∵,∴,不能得到;故选项B符合题意;∵,∴当或平分时,;故选项C,D均不符合题意;故选B5.【正确答案】D【分析】本题主要考查了角平分线的性质定理,根据角平分线的性质可知点P到的距离为10,进而得出答案.【详解】解:∵平分,,∴点P到的距离为10,∴点P与射线上某点连线的长度大于等于10,可以是11.故选D.6.【正确答案】A【分析】本题考查了等腰三角形的性质,三角形的外角的性质,线段的垂直平分线的性质,解题的关键是了解“等边对等角”的性质,难度不大.利用等边对等角求得,然后利用线段的垂直平分线的性质与三角形外角的性质求得答案即可.【详解】解:∵,,∴,∵由作图可得:的垂直平分线交于,∴,,∴,∴.故选A.7.【正确答案】C【分析】本题主要考查了角平分线判定定理的应用.根据“到角两边的距离相等的点在角的平分线上”,即可获得答案.理解到角两边的距离相等的点在角的平分线上是解题的关键.【详解】解:要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是三条角平分线的交点.故选C.8.【正确答案】A【分析】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了三角形面积公式.过点作于点,如图,先利用三角形面积公式得到,再根据角平分线的性质得到,然后根据三角形面积公式,利用可求出的长.【详解】解:过点作于点,如图,∵是边上的中线,∴,∴,∵线段是的角平分线,,∴,∵,∴,解得.9.【正确答案】B【分析】本题考查等边三角形的性质,直角三角形的性质与线段和最值问题,掌握角所对的直角边与斜边的关系是解题关键.作,垂足为E,由等边三角形的性质可得,,所以.因此可以转化为,当A、P、E三点共线时,取到最小值.又根据垂线段最短可知,当时,最小,即最小,利用等边三角形的性质计算即可.【详解】解:如图,作,垂足为E,∵是等边三角形,又∵点D为边中点,∴,,∵,∴,在直角中,,,∴,∴,当A、P、E三点共线时,取到最小值,由垂线段最短可知,当时,最小,由等边三角形的性质可知,当时,,即的最小值为3.故选B.10.【正确答案】C【分析】根据等边三角形的性质可得,利用可证明,可判定①正确;根据全等三角形的性质可得,利用三角形外角性质可得,根据平角的定义可得,可判定②正确;由可得点D、E为的中点,根据等边三角形的性质可得是的垂直平分线,根据垂直平分线的性质可判定③正确;过点A作于G,利用可证明,根据全等三角形对应边上的高对应相等可得,利用可证明,可得,由可得,根据含角的直角三角形的性质可得,可得,即可判定④错误,综上即可得答案.【详解】解:∵是等边三角形,∴,∵∴,故①正确,∴,∴,∴,故②正确,∵,∴点D、E为的中点,∵是等边三角形,∴是的垂直平分线,∴,故③正确,过点A作于G,∵,∴,在和中,,∴,∴∵,∴是和边上的高,∴,在和中,,∴,∴,∵,∴,∴,∴,∴,∴,故④错误,综上所述:正确的结论有①②③,共3个,故选C.11.【正确答案】【分析】本题考查平行线的性质,等边三角形的性质,三角形内角和定理,熟练掌握平行线的性质是解题关键.【详解】解:如图,∵,∴,∵是等边三角形,∴,∴.12.【正确答案】【分析】本题考查等腰三角形的性质,三角形的外角的性质,掌握好三角形外角的性质是解题关键.设,根据等腰三角形的性质可得,,.由三角形外角的性质可得,,,计算出x的值即可.【详解】解:设,∵,∴,.∵是的外角,∴,∴,∵是的外角,∴,∴.13.【正确答案】7.5【分析】延长交于点E,构建全等三角形:.由全等三角形的对应边相等推知,;根据,,得出,即可求得.【详解】解:如图,延长交于点E.∵平分,∴,∵,∴.∵在与中,,∴.∴,.∵,∴.∴.∴.14.【正确答案】;或或【分析】(1)由等腰三角形的性质可得,,根据轴对称的性质可知,.结合已知条件,容易证出,则,从而求出;(2)由三角形内角和定理可得,,进而得到,由轴对称的性质可得,,从而计算得,若为等腰三角形,有三种可能,即、、,计算每种情况下的值,进一步算出θ的值.【详解】解:(1)∵,,∴,根据轴对称的性质可知,,,∴∵是的平分线,∴,在和中,,∴,∴,∴.(2)由轴对称的性质可得,,∵,∴,,∴,①当时,,∴,解得;②当时,,∴,∴,解得;③当时,,∴,解得;综上,当或或时,为等腰三角形.15.【正确答案】(1)(2)见详解,,(3)【分析】本题考查轴对称作图,网格中的三角形面积,点的对称变换,掌握好轴对称的性质是解题关键.(1)使用割补法,用长方形的面积减去三个直角三角形的面积.计算出的面积;(2)根据轴对称的性质,依次画出点、、,连接成三角形,并写出对应的点的坐标;(3)根据轴对称的性质,算出对称的点的坐标.【详解】(1)解:网格中三角形的面积可以用长方形面积减去三个直角三角形的面积得到,∴.(2)解:如图所示,由轴对称的性质可得,点的坐标为,点的坐标为.(3)解:如图,点E就是点C关于直线对称的点,根据轴对称的性质,点的坐标为.16.【正确答案】(1)见详解(2)见详解【分析】本题考查尺规作图:角平分线,垂线,掌握知识点是解题的关键.(1)根据尺规作图作角平分线的步骤,逐步作图即可;(2)根据尺规作图作垂线的步骤,逐步作图即可.【详解】(1)解:如图,为所作的角平分线;(2)解:如图,为所作的垂线.17.【正确答案】(1)12(2)【分析】本题考查垂直平分线的性质,等腰三角形的性质,三角形的内角和定理,掌握好垂直平分线定理是解题关键.(1)由垂直平分线定理可得,,,因此的周长等于的长;(2)根据可得,;同理,.由三角形内角和定理可以得到,,因此,从中减去和,从而计算出.【详解】(1)解:由垂直平分线定理可得,,,∴的周长为;(2)解:∵,,∴,,∵,∴,∴.18.【正确答案】见详解【详解】本题考查了全等三角形的判定与性质,角平分线的性质,正确掌握相关性质内容是解题的关键.先得,再结合,,证明,则,然后根据角平分线的性质即可得证.【分析】证明:∵是的角平分线∴,∵,,∴,∴,∵,∴.19.【正确答案】(1)40海里(2)有触礁危险,理由见详解【分析】(1)由题意可知,,,则,可得;(2)过点作射线的垂线,交射线于点C,根据题意可得.由含角的直角三角形的性质可得,.求出的值后,与21进行比较,并得出结论.【详解】(1)解:由题意可知,海里,,,∴,∴,∴海里;(2)如图,过点作射线的垂线,交射线于点C,∵,∴,∵,∴,在直角中,,,∴海里,∵,∴若轮船仍向前航行,有触礁危险.20.【正确答案】35°【分析】连接,根据垂直平分线的性质,等腰三角形的性质可得,,根据三角形的内角和定理,外角性质建立二元次一次方程组,解方程组求解即可【详解】解:如图,连接AB的垂直平分线EF交BC于点E,BE=AC.又D为线段CE的中点,设,则∠BAC=75°,①②联立①②,解得即∠B的度数为21.【正确答案】(1)见详解;(2).【分析】()证明,得到,即可求证;()证明,得到,再根据三角形内角和定理即可求解;本题考查了角平分线的定义,平行线的性质,等腰三角形的判定和性质,三角形内角和定理,掌握等腰三角形的判定和性质是解题的关键.【详解】(1)证明:∵平分,∴,∵,∴,,∴,∴,∴是等腰三角形;(2)解:∵,∴,∵,∴,∵,∴,∵,平分,∴,∴,∴.22.【正确答案】(1)见详解(2)4【分析】本题考查等边三角形的性质,平行线的性质,全等三角形的判定与性质,添加平行线构造全等三角形是解题关键.(1)过点D作的平行线,交于点G,由是等边三角形和,可得也是等边三角形,则有.结合已知条件,容易证出,从而得到;(2)由(1)可知,,则有.因为是等边三角形,同时,可得,因此.【详解】(1)证明:如图,过点D作的平行线,交于点G,∵是等边三角形,∴,∵,∴,,,∴是等边三角形,∴,∵,∴,在和中,,∴,∴;(2)解:如图,由(1)可知,,∴,∵是等边三角形,,∴,∵,,∴.23.【正确答案】(1)见详解(2)见详解(3)【分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论