版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长郡中学、雅礼中学等四校2026届数学高二上期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=()A.1 B.2C. D.42.由1,2,3,4,5五个数组成没有重复数字的五位数,其中1与2不能相邻的排法总数为()A.20 B.36C.60 D.723.已知且,则的值为()A.3 B.4C.5 D.64.设.若,则=()A. B.C. D.e5.已知点在抛物线:上,点为抛物线的焦点,,点P到y轴的距离为4,则抛物线C的方程为()A. B.C. D.6.已知不等式解集为,下列结论正确的是()A. B.C. D.7.已知命题,,若是一个充分不必要条件,则的取值范围是()A. B.C. D.8.两圆与的公切线有()A.1条 B.2条C.3条 D.4条9.已知直线与直线垂直,则实数()A.10 B.C.5 D.10.若,则x的值为()A.4 B.6C.4或6 D.811.已知,为双曲线的两个焦点,点P在双曲线上且满足,那么点P到x轴的距离为()A. B.C. D.12.2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,,,,分别是大星中心点与四颗小星中心点的联结线,,则第三颗小星的一条边AB所在直线的倾斜角约为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线:的左、右焦点分别为,,为的右支上一点,且,则的离心率为___________.14.方程()所表示的直线恒过定点________15.2021年7月,某市发生德尔塔新冠肺炎疫情,市卫健委决定在全市设置多个核酸检测点对全市人员进行核酸检测.已知组建一个小型核酸检测点需要男医生1名,女医生3名,每小时可做200人次的核酸检测,组建一个大型核酸检测点需要男医生3名,女医生3名.每小时可做300人次的核酸检测.某三甲医院决定派出男医生10名、女医生18名去做核酸检测工作,则这28名医生需要组建________个小型核酸检测点和________个大型核酸检测点,才能更高效的完成本次核酸检测工作.16.椭圆的左、右焦点分别为,,过焦点的直线交该椭圆于两点,若的内切圆面积为,两点的坐标分别为,,则的面积________,的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,().(1)证明:数列是等比数列,并求出数列的通项公式;(2)数列满足:(),求数列的前项和.18.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.19.(12分)已知向量,,且.(1)求满足上述条件的点M(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m(k≠0)相交于不同的两点P,Q,点A(0,1),当|AP|=|AQ|时,求实数m的取值范围.20.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.21.(12分)已知数列的前项和为,并且满足(1)求数列的通项公式;(2)若,数列的前项和为,求证:22.(10分)如图,已知在四棱锥中,平面,四边形为直角梯形,,,.(1)求直线与平面所成角的正弦值;(2)在线段上是否存在点,使得二面角的余弦值?若存在,指出点的位置;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据抛物线定义,转化,要使有最小值,只需最大,即直线与抛物线相切,联立直线方程与抛物线方程,求出斜率,然后求出点坐标,即可求解.【详解】由题知,抛物线的准线方程为,,过P作垂直于准线于,连接,由抛物线定义知.由正弦函数知,要使最小值,即最小,即最大,即直线斜率最大,即直线与抛物线相切.设所在的直线方程为:,联立抛物线方程:,整理得:则,解得即,解得,代入得或,再利用焦半径公式得故选:B.关键点睛:本题考查抛物线的性质,直线与抛物线的位置关系,解题的关键是要将取最小值转化为直线斜率最大,再转化为抛物线的切线,考查学生的转化思想与运算求解能力,属于中档题.2、D【解析】先排3,4,5,然后利用插空法在4个位置上选2个排1,2.【详解】先排3,4,5,,共有种排法,然后在4个位置上选2个排列1,2,有种排法,则1与2不能相邻的排法总数为种,故选:D.3、C【解析】由空间向量数量积的坐标运算求解【详解】由已知,解得故选:C4、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.5、D【解析】由抛物线定义可得,注意开口方向.详解】设∵点P到y轴的距离是4∴∵,∴.得:.故选:D.6、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.7、A【解析】先化简命题p,q,再根据是的一个充分不必要条件,由q求解.【详解】因为命题,或,又是的一个充分不必要条件,所以,解得,所以的取值范围是,故选:A8、D【解析】求得圆心坐标分别为,半径分别为,根据圆圆的位置关系的判定方法,得出两圆的位置关系,即可求解.【详解】由题意,圆与圆,可得圆心坐标分别为,半径分别为,则,所以,可得圆外离,所以两圆共有4条切线.故选:D.9、B【解析】根据两直线垂直,列出方程,即可求解.【详解】由题意,直线与直线垂直,可得,解得.故选:B.10、C【解析】根据组合数的性质可求解.【详解】,或,即或.故选:C11、D【解析】设,由双曲线的性质可得的值,再由,根据勾股定理可得的值,进而求得,最后利用等面积法,即可求解【详解】设,,为双曲线的两个焦点,设焦距为,,点P在双曲线上,,,,,,的面积为,利用等面积法,设的高为,则为点P到x轴的距离,则,故选:D【点睛】本题考查双曲线的性质,难度不大.12、C【解析】由五角星的内角为,可知,又平分第三颗小星的一个角,过作轴平行线,则,即可求出直线的倾斜角.【详解】都为五角星的中心点,平分第三颗小星的一个角,又五角星的内角为,可知,过作轴平行线,则,所以直线的倾斜角为,故选:C【点睛】关键点点睛:本题考查直线倾斜角,解题的关键是通过做辅助线找到直线的倾斜角,通过几何关系求出倾斜角,考查学生的数形结合思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由双曲线定义可得a,代入点P坐标可得b,然后可解.【详解】由题知,故,又点在双曲线上,所以,解得,所以.故答案为:14、【解析】将方程化为,令得系数等于0,即可得到答案.【详解】方程可化为,由,得,所以方程()所表示的直线恒过定点.故答案为:.【点睛】本题考查了直线恒过定点问题,属于基础题.15、①.4②.2【解析】根据题意建立不等式组,进而作出可行域,最后通过数形结合求得答案.【详解】设需要组建个小型核酸检测点和个大型核酸检测点,则每小时做核酸检测的最高人次,作出可行域如图中阴影部分所示,由图可见当直线过点A时,z取得最大值,由得恰为整数点,所以组建4个小型核酸检测点和2个大型核酸检测点,才能更高效的完成本次核酸检测工作.故答案为:4;2.16、①.6②.3【解析】由题意得,由内切圆面积为可得其半径,根据焦点三角形面积公式可得第一空答案,结合面积公式和等面积法建立等式化简即可.【详解】解:由得由内切圆面积为可得其半径,设其内切圆圆心为则又所以.故答案为:6;3【点睛】椭圆中常用面积公式:(1)(表示边上的高);(2);(3)(为三角形内切圆半径);(4).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析,;(2).【解析】(1)将给定等式变形,计算即可判断数列类型,再求出其通项而得解;(2)利用(1)的结论求出数列的通项,然后利用错位相减法求解即得.【详解】(1)因数列满足,,则,而,于是数列是首项为1,公比为2的等比数列,,即,所以数列是等比数列,,;(2)由(1)知,则于是得,,所以数列的前项和.18、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.19、(1)+y2=1;(2).【解析】(1)应用向量垂直的坐标表示得x2+3y2=3,即可写出M的轨迹C的方程;(2)由直线与曲线C交于不同的两点P(x1,y1),Q(x2,y2),设直线y=kx+m(k≠0),联立方程整理所得方程有,且由根与系数关系用m,k表示x1+x2,x1x2,若N为PQ的中点结合|AP|=|AQ|知PQ⊥AN可得m、k的等量关系,结合即可求m的范围.【详解】(1)∵,即,∴,即有x2+3y2=3,即点M(x,y)的轨迹C的方程为+y2=1.(2)由得(1+3k2)x2+6kmx+3(m2-1)=0.∵曲线C与直线y=kx+m(k≠0)相交于不同的两点,∴Δ=(6km)2-12(1+3k2)(m2-1)=12(3k2-m2+1)>0,即3k2-m2+1>0①,且x1+x2=,x1x2=.设P(x1,y1),Q(x2,y2),线段PQ的中点N(x0,y0),则.∵|AP|=|AQ|,即知PQ⊥AN,设kAN表示直线AN的斜率,又k≠0,∴kANk=-1.即·k=-1,得3k2=2m-1②,而3k2>0,有m>.将②代入①得2m1m2+1>0,即2m<0,解得0<m<2,∴m的取值范围为.【点睛】思路点睛:1、由向量垂直,结合其坐标表示得到关于x,y的方程,写出曲线C的标准方程即可.2、由直线与曲线C相交,联立方程有,由|AP|=|AQ|得直线的垂直关系,即斜率之积为-1,进而可求参数的范围.20、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解】∵ABCD为菱形,,∴为正三角形,∴.∵平面ABCD,∴与平面ABCD所成角,由,得,所以.如图,分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,则,,,,,,,设平面FAC的法向量为,则由可得,取,故可得平面FAC的一个法向量为,记直线与平面FAC的夹角为,则21、(1);(2)证明见解析.【解析】(1)利用和项可求得的通项公式,注意别漏了说明;(2)先用错位相减法求出数列的前项和,从而可知【详解】(1),①当时,,②由①—②可得:,且数列是首项为1,公差为2的等差数列,即(2)由(1)知数列,,则,①∴,②由①﹣②得,∴,.【点睛】本题主要考查给出的一个关系式求数列的通项公式以及用错位相减法求数列的前n项和.22、(1);(2)存在,为上靠近点的三等分点【解析】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,求出的坐标以及平面的一个法向量,计算即可求解;(2)假设线段上存在点符合题意,设可得,求出平面的法向量和平面的法向量,利用即可求出的值,即可求解.【详解】(1)分别以所在的直线为轴,建立如图所示的空间直角坐标系,如图所示:则,,,.不妨设平面的一个法向量,则
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《GAT 760.5-2008公安信息化标准管理分类与代码 第5部分:制定修订方式代码》专题研究报告深度
- 2026年深圳中考语文压缩语段专项试卷(附答案可下载)
- 2026年深圳中考英语期末综合测评试卷(附答案可下载)
- 山东省青岛市市北区2026年九年级上学期期末考试物理试题附答案
- 禁毒相关题目及答案
- 2026年深圳中考数学圆的切线专项试卷(附答案可下载)
- 大学生信息技术培训课件
- 临终患者的心理社会支持
- 第14课《红烛》(教学设计)高二语文+拓展模块下册(高教版2023年版)
- 产科围手术期产后焦虑护理
- JGT138-2010 建筑玻璃点支承装置
- 垃圾清运服务投标方案(技术方案)
- 颅鼻眶沟通恶性肿瘤的治疗及护理
- 光速测量实验讲义
- 断桥铝合金门窗施工组织设计
- 新苏教版六年级科学上册第一单元《物质的变化》全部教案
- 四川山体滑坡地质勘察报告
- 青岛啤酒微观运营
- 工程结算书(设备及安装类)
- GB/T 19142-2016出口商品包装通则
- 高桩码头施工组织设计-图文
评论
0/150
提交评论