北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题含解析_第1页
北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题含解析_第2页
北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题含解析_第3页
北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题含解析_第4页
北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市昌平区临川育人学校2026届高三上数学期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为()A. B. C. D.2.欧拉公式为,(虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式可知,表示的复数位于复平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,则()A. B. C. D.4.已知实数,,函数在上单调递增,则实数的取值范围是()A. B. C. D.5.设等差数列的前n项和为,且,,则()A.9 B.12 C. D.6.已知复数满足:(为虚数单位),则()A. B. C. D.7.某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是()A. B. C. D.8.已知实数,满足约束条件,则目标函数的最小值为A. B.C. D.9.如图所示,三国时代数学家赵爽在《周髀算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一内角为,若向弦图内随机抛掷500颗米粒(米粒大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.134 B.67 C.182 D.10810.已知实数,则的大小关系是()A. B. C. D.11.已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为()A. B. C.4 D.212.在中,为上异于,的任一点,为的中点,若,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为定义在上的偶函数,当时,(为常数),若,则实数的值为______.14.若,则=______,=______.15.已知实数a,b,c满足,则的最小值是______.16.如图是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,,则的面积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距是,点是椭圆上一动点,点是椭圆上关于原点对称的两点(与不同),若直线的斜率之积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)是抛物线上两点,且处的切线相互垂直,直线与椭圆相交于两点,求的面积的最大值.18.(12分)如图,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在线段上是否存在一点,使直线与平面所成的角正弦值为,若存在求出的长,若不存在说明理由.19.(12分)如图1,已知四边形BCDE为直角梯形,,,且,A为BE的中点将沿AD折到位置如图,连结PC,PB构成一个四棱锥.(Ⅰ)求证;(Ⅱ)若平面.①求二面角的大小;②在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.20.(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.21.(12分)已知数列满足,.(1)求数列的通项公式;(2)若,求数列的前项和.22.(10分)已知数列中,a1=1,其前n项和为,且满足.(1)求数列的通项公式;(2)记,若数列为递增数列,求λ的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

先求出直线l的方程为y(x﹣c),与y=±x联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率.【详解】双曲线1(a>b>0)的渐近线方程为y=±x,∵直线l的倾斜角是渐近线OA倾斜角的2倍,∴kl,∴直线l的方程为y(x﹣c),与y=±x联立,可得y或y,∵,∴2•,∴ab,∴c=2b,∴e.故选B.【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题.2、A【解析】

计算,得到答案.【详解】根据题意,故,表示的复数在第一象限.故选:.【点睛】本题考查了复数的计算,意在考查学生的计算能力和理解能力.3、C【解析】

利用诱导公式得,,再利用倍角公式,即可得答案.【详解】由可得,∴,∴.故选:C.【点睛】本题考查诱导公式、倍角公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意三角函数的符号.4、D【解析】

根据题意,对于函数分2段分析:当,由指数函数的性质分析可得①,当,由导数与函数单调性的关系可得,在上恒成立,变形可得②,再结合函数的单调性,分析可得③,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,

当,若为增函数,则①,

当,若为增函数,必有在上恒成立,

变形可得:,

又由,可得在上单调递减,则,

若在上恒成立,则有②,

若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数的最小值,则需有,③

联立①②③可得:.

故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.5、A【解析】

由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.6、A【解析】

利用复数的乘法、除法运算求出,再根据共轭复数的概念即可求解.【详解】由,则,所以.故选:A【点睛】本题考查了复数的四则运算、共轭复数的概念,属于基础题.7、D【解析】

利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.8、B【解析】

作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值.【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时.故选B.【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键.9、B【解析】

根据几何概型的概率公式求出对应面积之比即可得到结论.【详解】解:设大正方形的边长为1,则小直角三角形的边长为,

则小正方形的边长为,小正方形的面积,

则落在小正方形(阴影)内的米粒数大约为,

故选:B.【点睛】本题主要考查几何概型的概率的应用,求出对应的面积之比是解决本题的关键.10、B【解析】

根据,利用指数函数对数函数的单调性即可得出.【详解】解:∵,∴,,.∴.故选:B.【点睛】本题考查了指数函数对数函数的单调性,考查了推理能力与计算能力,属于基础题.11、D【解析】

设,,,根据可得①,再根据又②,由①②可得,化简可得,即可求出离心率.【详解】解:设,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故选:D.【点睛】本题考查双曲线的方程和性质,考查了斜率的计算,离心率的求法,属于基础题和易错题.12、A【解析】

根据题意,用表示出与,求出的值即可.【详解】解:根据题意,设,则,又,,,故选:A.【点睛】本题主要考查了平面向量基本定理的应用,关键是要找到一组合适的基底表示向量,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据为定义在上的偶函数,得,再根据当时,(为常数)求解.【详解】因为为定义在上的偶函数,所以,又因为当时,,所以,所以实数的值为1.故答案为:1【点睛】本题主要考查函数奇偶性的应用,还考查了运算求解的能力,属于基础题.14、10【解析】

①根据换底公式计算即可得解;②根据同底对数加法法则,结合①的结果即可求解.【详解】①由题:,则;②由①可得:.故答案为:①1,②0【点睛】此题考查对数的基本运算,涉及换底公式和同底对数加法运算,属于基础题目.15、【解析】

先分离出,应用基本不等式转化为关于c的二次函数,进而求出最小值.【详解】解:若取最小值,则异号,,根据题意得:,又由,即有,则,即的最小值为,故答案为:【点睛】本题考查了基本不等式以及二次函数配方求最值,属于中档题.16、【解析】

根据个全等的三角形,得到,设,求得,利用余弦定理求得,再利用三角形的面积公式,求得三角形的面积.【详解】由于三角形是由个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,所以.在三角形中,.设,则.由余弦定理得,解得.所以三角形边长为,面积为.故答案为:【点睛】本题考查了等边三角形的面积计算公式、余弦定理、全等三角形的性质,考查了推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)设点的坐标,表达出直线的斜率之积,再根据三点均在椭圆上,根据椭圆的方程代入斜率之积的表达式列式求解即可.(Ⅱ)设直线的方程为,根据直线的斜率之积为可得,再联立直线与椭圆的方程,表达出面积公式,再换元利用基本不等式求解即可.【详解】(Ⅰ)设,,则,又,,故,即,故,又,故.故椭圆的标准方程为.(Ⅱ)设直线的方程为,,由,故,又,故,因为处的切线相互垂直故.故直线的方程为.联立故.故,代入韦达定理有设,则.当且仅当时取等号.故的面积的最大值为.【点睛】本题主要考查了根据椭圆上的点坐标满足的关系式求解椭圆基本量求方程的方法,同时也考查了抛物线的切线问题以及椭圆中面积的最值问题,需要根据导数的几何意义求切线斜率,再换元利用基本不等式求解.属于难题.18、(Ⅰ)证明见解析;(Ⅱ);(Ⅲ)线段上是存在一点,,使直线与平面所成的角正弦值为.【解析】

(Ⅰ)取中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面;(Ⅱ)取中点,连结,,推导出平面,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值;(Ⅲ)假设在线段上是存在一点,使直线与平面所成的角正弦值为,设.利用向量法能求出结果.【详解】(Ⅰ)证明:取中点,连结、,是边长为2的等边三角形,,,,点为的中点,,四边形是平行四边形,,平面,平面,平面.(Ⅱ)解:取中点,连结,,在四棱柱中,平面平面,是边长为2的等边三角形,,,,点为的中点,平面,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,,1,,,0,,,1,,,0,,,,,,0,,,,,设平面的法向量,,,则,取,得,,,设平面的法向量,,,则,取,得,设二面角的平面角为,则.二面角的余弦值为.(Ⅲ)解:假设在线段上是存在一点,使直线与平面所成的角正弦值为,设.则,,,,,,平面的法向量,,解得,线段上是存在一点,,使直线与平面所成的角正弦值为.【点睛】本题考查线面平行的证明,考查二面角的余弦值的求法,考查满足正弦值的点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.19、Ⅰ详见解析;Ⅱ①,②或.【解析】

Ⅰ可以通过已知证明出平面PAB,这样就可以证明出;Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为、平面PCD的法向量,利用空间向量的数量积,求出二面角的大小;求出平面PBC的法向量,利用线面角的公式求出的值.【详解】证明:Ⅰ在图1中,,,为平行四边形,,,,当沿AD折起时,,,即,,又,平面PAB,又平面PAB,.解:Ⅱ以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于平面ABCD则0,,0,,1,,0,,1,1,,1,,0,,设平面PBC的法向量为y,,则,取,得0,,设平面PCD的法向量b,,则,取,得1,,设二面角的大小为,可知为钝角,则,.二面角的大小为.设AM与面PBC所成角为,0,,1,,,,平面PBC的法向量0,,直线AM与平面PBC所成的角为,,解得或.【点睛】本题考查了利用线面垂直证明线线垂直,考查了利用向量数量积,求二面角的大小以及通过线面角公式求定比分点问题.20、(1),;(2)【解析】

(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论