安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题含解析_第1页
安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题含解析_第2页
安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题含解析_第3页
安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题含解析_第4页
安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省利辛县阚疃金石中学2026届数学高二上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象如图所示,则函数的图象可能是A. B.C. D.2.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.3.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.44.“”是“方程表示焦点在x轴上的椭圆”的()A.充要条件 B.必要而不充分条件C.充分而不必要条件 D.既不充分也不必要条件5.经过点且与直线垂直的直线方程为()A. B.C. D.6.某考点配备的信号检测设备的监测范围是半径为100米的圆形区域,一名工作人员持手机以每分钟50米的速度从设备正东方向米的处出发,沿处西北方向走向位于设备正北方向的处,则这名工作人员被持续监测的时长为()A.1分钟 B.分钟C.2分钟 D.分钟7.如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是A. B.C. D.8.椭圆的焦点为、,上顶点为,若,则()A B.C. D.9.在条件下,目标函数的最大值为2,则的最小值是()A.20 B.40C.60 D.8010.若圆与直线相切,则()A.3 B.或3C. D.或11.函数的导数记为,则等于()A. B.C. D.12.如图,某铁路客运部门设计的从甲地到乙地旅客托运行李的费用c(元)与行李质量w(kg)之间的流程图.已知旅客小李和小张托运行李的质量分别为30kg,60kg,且他们托运的行李各自计费,则这两人托运行李的费用之和为()A.28元 B.33元C.38元 D.48元二、填空题:本题共4小题,每小题5分,共20分。13.已知、是空间内两个单位向量,且,如果空间向量满足,且,,则对于任意的实数、,的最小值为______14.设,若,则S=________.15.已知为坐标原点,、分别是双曲线的左、右顶点,是双曲线上不同于、的动点,直线、与轴分别交于点、两点,则________16.如图①,用一个平面去截圆锥,得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家(1794-1847)的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面,截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为2的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆.已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的离心率为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆经过点,左焦点为.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆的右顶点,过点且斜率为的直线交椭圆于两点,求的面积.18.(12分)如图,点分别在射线,上运动,且(1)求;(2)求线段的中点M的轨迹C的方程;(3)直线与,轨迹C及自上而下依次交于D,E,F,G四点,求证:19.(12分)为了了解某工厂生产的产品情况,从该工厂生产的产品随机抽取了一个容量为200的样本,测量它们的尺寸(单位:),数据分为,,,,,,七组,其频率分布直方图如图所示.(1)根据频率分布直方图,求200件样本中尺寸在内的样本数;(2)记产品尺寸在内为等品,每件可获利6元;产品尺寸在内为不合格品,每件亏损3元;其余的为合格品,每件可获利4元.若该机器一个月共生产2000件产品.以样本的频率代替总体在各组的频率,若单月利润未能达到9000元,则需要对该工厂设备实施升级改造.试判断是否需要对该工厂设备实施升级改造.20.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.21.(12分)已知圆(1)若直线与圆C相交于A、B两点,当弦长最短时,求直线l的方程;(2)若与圆C相外切且与y轴相切的圆的圆心记为D,求D点的轨迹方程22.(10分)已如椭圆C:=1(a>b>0)的有顶点为M(2,0),且离心率e=,点A,B是椭圆C上异于点M的不同的两点(Ⅰ)求椭圆C的方程;(Ⅱ)设直线MA与直线MB的斜率分别为k1,k2,若k1•k2=,证明:直线AB一定过定点

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】原函数先减再增,再减再增,且位于增区间内,因此选D【名师点睛】本题主要考查导数图象与原函数图象的关系:若导函数图象与轴的交点为,且图象在两侧附近连续分布于轴上下方,则为原函数单调性的拐点,运用导数知识来讨论函数单调性时,由导函数的正负,得出原函数的单调区间2、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D3、B【解析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B4、A【解析】由椭圆的标准方程结合充分必要条件的定义即得.【详解】若,则方程表示焦点在轴上的椭圆;反之,若方程表示焦点在轴上的椭圆,则;所以“”是“方程表示焦点在x轴上的椭圆”的充要条件.故选:A.5、A【解析】根据点斜式求得正确答案.【详解】直线的斜率为,经过点且与直线垂直的直线方程为,即.故选:A6、C【解析】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,求得直线和圆的方程,利用点到直线的距离公式和圆的弦长公式,求得的长,进而求得持续监测的时长.【详解】以设备的位置为坐标原点,其正东方向为轴正方向,正北方向为轴正方向建立平面直角坐标系,如图所示,则,,可得,圆记从处开始被监测,到处监测结束,因为到的距离为米,所以米,故监测时长为分钟故选:C.7、A【解析】如图:如图,取小圆上一点,连接并延长交大圆于点,连接,,则在小圆中,,在大圆中,,根据大圆的半径是小圆半径的倍,可知的中点是小圆转动一定角度后的圆心,且这个角度恰好是,综上可知小圆在大圆内壁上滚动,圆心转过角后的位置为点,小圆上的点,恰好滚动到大圆上的也就是此时的小圆与大圆的切点.而在小圆中,圆心角(是小圆与的交点)恰好等于,则,而点与点其实是同一个点在不同时刻的位置,则可知点与点是同一个点在不同时刻的位置.由于的任意性,可知点的轨迹是大圆水平的这条直径.类似的可知点的轨迹是大圆竖直的这条直径.故选A.8、C【解析】分析出为等边三角形,可得出,进而可得出关于的等式,即可解得的值.【详解】在椭圆中,,,,如下图所示:因为椭圆的上顶点为点,焦点为、,所以,,为等边三角形,则,即,因此,.故选:C.9、C【解析】首先画出可行域,找到最优解,得到关系式作为条件,再去求的最小值.【详解】画出的可行域,如下图:由得由得;由得;目标函数取最大值时必过N点,则则(当且仅当时等号成立)故选:C10、B【解析】根据圆与与直线相切,利用圆心到直线的距离等于半径求解.【详解】圆的标准方程为:,则圆心为,半径为,因为圆与与直线相切,所以圆心到直线的距离等于半径,即,解得或,故选:B11、D【解析】求导后代入即可.【详解】,.故选:D.12、D【解析】根据程序框图分别计算小李和小张托运行李的费用,再求和得出答案.【详解】由程序框图可知,当时,元;当时,元,所以这两人托运行李的费用之和为元.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据已知可设,,,根据已知条件求出、、的值,将向量用坐标加以表示,利用空间向量的模长公式可求得的最小值.【详解】因为、是空间内两个单位向量,且,所以,,因为,则,不妨设,,设,则,,解得,则,因为,可得,则,所以,,当且仅当时,即当时,等号成立,因此,对于任意的实数、,的最小值为.故答案为:.14、1007【解析】可证f(x)+f(1﹣x)=1,由倒序相加法可得所求为1007对的组合,即1007个1,可得答案【详解】解:∵函数f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案为:1007点睛】本题考查倒序相加法求和,推断出f(x)+f(1﹣x)=1是解题的关键.15、3【解析】求得坐标,设出点坐标,求得直线的方程,由此求得两点的纵坐标,进而求得.【详解】依题意,设,则,直线的方程为,则,直线的方程为,则,所以.故答案为:16、##0.5【解析】利用球与圆锥相切,得出截面,在平面图形中求解,以及圆锥曲线的来源来理解切点为椭圆的一个焦点,求出,得出离心率.【详解】设球切于,切于E,,球半径为2,所以,,∴,又中,,,故椭圆长轴长为,,根据椭圆在圆锥中截面与二球相切的切点为椭圆的焦点知:球O与相切的切点为椭圆的一个焦点,且,,椭圆的离心率为.故答案:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由椭圆的定义求出的值,由求出,代入,得到椭圆的方程;(Ⅱ)由点斜式求出直线的方程,设,联立直线与椭圆方程,求出的值,再算出的面积试题解析(Ⅰ)由椭圆的定义得:又,故,∴椭圆的方程为:.(Ⅱ)过的直线方程为,,联立,设,则,∴的面积.点睛:本题主要考查了求椭圆的方程,直线与椭圆相交时弦长的计算等,属于中档题.在(Ⅱ)中,注意的面积的计算公式18、(1)2(2)(3)证明见详解【解析】(1)用两点间的距离公式和三角形的面积公式,结合已知直接可解;(2)根据中点坐标公式,结合(1)中结论可得;(3)要证,只需证和的中点重合,直接或利用韦达定理求出中点横坐标,证明其相等即可.【小问1详解】记直线的倾斜角为,则,易得所以因为,所以,整理得:【小问2详解】设点M的坐标为,则即,由(1)知,所以,即【小问3详解】要证,只需证和的中点重合,记D,E,F,G的横坐标分别为,易知直线的斜率(当时与渐近线平行或重合,此时与双曲线最多一个交点)则解方程组,得解方程组,得将代入,得所以因为所以所以和的中点的横坐标相等,所以和的中点重合,记其中点为N,则有,即19、(1)件;(2)需要对该工厂设备实施升级改造.【解析】(1)根据评论分布直方图面积之和为1列等式计算得,用200乘以内频率即可得出答案;(2)根据题意计算等品件,不合格品有件,进而得合格品有件,根据题意计算其利润与9000比较判定需要对该工厂设备实施升级改造.【详解】解:(1)因为,解得,所以200件样本中尺寸在内的样本数为(件).(2)由题意可得,这批产品中优等品有件,这批产品中不合格品有件,这批产品中合格品有件,元.所以该工厂生产的产品一个月所获得的利润为8960元,因为,所以需要对该工厂设备实施升级改造.【点睛】频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标;(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和;(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.20、(1)(2),【解析】(1)由,计算出公差,再写出通项公式即可.(2)直接用公式写出,配方后求出最小值.【小问1详解】设公差为,由得,从而,即又,【小问2详解】由(1)的结论,,,当时,取得最小值.21、(1)(2)【解析】(1)先求出直线过的定点,再根据弦长|AB|最短时,求解.(2)用直译法求解【小问1详解】直线即,所以直线过定点.当弦长|AB|最短时,因为直线PC的斜率所以此时直线的斜率所以当弦长|AB|最短时,求直线的方程为,即【小问2详解】设,易知圆心D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论