浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题含解析_第1页
浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题含解析_第2页
浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题含解析_第3页
浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题含解析_第4页
浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市方格外国语学校2026届数学高一上期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=13A.-13C.-222.方程的实数根所在的区间是()A. B.C. D.3.将函数的图象向左平移个单位长度,再向下平移个单位长度,得到函数的图象,那么可以取的值为()A. B.C. D.4.已知a=1.50.2,b=log0.21.5,c=0.21.5,则()A.a>b>c B.b>c>aC.c>a>b D.a>c>b5.下列命题中,错误的是()A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则6.函数(且)的图像恒过定点()A. B.C. D.7.函数的部分图象大致是()A. B.C. D.8.函数和都是减函数的区间是A. B.C. D.9.设函数,若恰有2个零点,则实数的取值范围是()A. B.C. D.10.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂师徒二人各加工相同型号的零件2个,是否加工出精品均互不影响.已知师傅加工一个零件是精品的概率为,师徒二人各加工2个零件都是精品的概率为,则徒弟加工2个零件都是精品的概率为______12.以A(1,1),B(3,2),C(5,4)为顶点的△ABC,其边AB上的高所在的直线方程是________.13.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________14.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________15.写出一个定义域为,周期为的偶函数________16.,若,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)若,,求的值18.已知函数(1)用定义证明函数在区间上单调递增;(2)对任意都有成立,求实数的取值范围19.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面由扇形挖去扇形后构成的已知米,米,线段、线段与弧、弧的长度之和为米,圆心角为弧度(1)求关于的函数解析式;(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值20.某工厂进行废气回收再利用,把二氧化硫转化为一种可利用的化工产品.已知该单位每月的处理量最少为200吨,最多为500吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的月平均处理成本最低?(2)该工厂每月进行废气回收再利用能否获利?如果获利,求月最大利润;如果不获利,求月最大亏损额.21.2022年新冠肺炎仍在世界好多国家肆虐,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨.我市某小区为了防止疫情在小区出现,严防外来人员进入小区,切实保障居民正常生活,设置“特殊值班岗”.现有包含甲、乙在内的4名志愿者参与该工作,每人安排一天,每4天一轮.在一轮的“特殊值班岗”安排中,求:(1)甲、乙两人相邻值班的概率;(2)甲或乙被安排在前2天值班的概率

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据终边关于y轴对称可得关系α+β=π+2kπ,k∈Z,再利用诱导公式,即可得答案;【详解】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,∴α+β=π+2kπ,k∈Z,∵sinα=∴sin故选:B.【点睛】本题考查角的概念和诱导公式的应用,考查逻辑推理能力、运算求解能力.2、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.3、B【解析】写出平移变换后的函数解析式,将函数的解析式利用二倍角公式降幂,化为正弦型函数,进而可得出的表达式,利用赋特殊值可得出结果.【详解】将函数的图象向左平移个单位长度,再向下平移个单位长度,所得图象对应的函数的解析式为,,,解得,当时,.故选:B.【点睛】本题考查利用三角函数图象变换求参数,解题的关键就是结合图象变换求出变换后所得函数的解析式,考查计算能力,属于中等题.4、D【解析】由对数和指数函数的单调性比较大小即可.【详解】因为,所以故选:D5、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.6、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.7、A【解析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.8、A【解析】y=sinx是减函数的区间是,y=cosx是减函数的区间是[2k,2k+],,∴同时成立的区间为故选A.9、B【解析】当时,在上单调递增,,当时,令得或(1)若,即时,在上无零点,此时,∴在[1,+∞)上有两个零点,符合题意;(2)若,即时,在(−∞,1)上有1个零点,∴在上只有1个零点,①若,则,∴,解得,②若,则,∴在上无零点,不符合题意;③若,则,∴在上无零点,不符合题意;综上a的取值范围是.选B点睛:解答本题的关键是对实数a进行分类讨论,根据a的不同取值先判断函数在(−∞,1)上的零点个数,在此基础上再判断函数在上的零点个数,看是否满足有两个零点即可10、C【解析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.二、填空题:本大题共6小题,每小题5分,共30分。11、##0.25【解析】结合相互独立事件的乘法公式直接计算即可.【详解】记师傅加工两个零件都是精品的概率为,则,徒弟加工两个零件都是精品的概率为,则师徒二人各加工两个零件都是精品的概率为,求得,故徒弟加工两个零件都是精品的概率为.故答案为:12、2x+y-14=0【解析】求出直线AB的斜率,即可得出高的斜率,由点斜式即可求出.【详解】由A,B两点得,则边AB上的高所在直线的斜率为-2,故所求直线方程是y-4=-2(x-5),即2x+y-14=0.故答案为:2x+y-14=0.13、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:14、24:25【解析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.15、(答案不唯一)【解析】结合定义域与周期与奇偶性,写出符合要求的三角函数即可.【详解】满足定义域为R,最小正周期,且为偶函数,符合要求.故答案为:16、【解析】分和两种情况解方程,由此可得出的值.【详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据二倍角的正、余弦公式和辅助角公式化简计算可得,结合公式计算即可;(2)根据同角三角函数的基本关系和角的范围求出,根据和两角和的正弦公式直接计算即可.【小问1详解】最小正周期【小问2详解】,因为,,若,则,不合题意,又,所以,因为,所以,所以18、(1)证明见解析(2)【解析】(1)由定义证明即可;(2)求出在上的最大值,即可得出实数的取值范围小问1详解】任取,且,因为,所以,所以,即.所以在上为单调递增【小问2详解】任意都有成立,即.由(1)知在上为增函数,所以时,.所以实数的取值范围是.19、(1).(2)当时,取最大值.【解析】(1)根据弧长公式和周长列方程得出关于的函数解析式;(2)根据扇形面积公式求出关于的函数,从而得出的最大值.【小问1详解】解:根据题意,可算得弧,弧,,;【小问2详解】解:依据题意,可知,当时,.答:当米时铭牌的面积最大,且最大面积为平方米20、(1)400吨;(2)该工厂每月废气回收再利用不获利,月最大亏损额为27500元.【解析】(1)由题意可知,二氧化碳每吨的平均处理成本为,化简后再利用基本不等式即可求出最小值.(2)该单位每月获利为元,则,由的范围,利用二次函数的性质得到的范围即可得结论【详解】(1)由题意可知,二氧化碳每吨的平均处理成本为,当且仅当,即时等号成立,故该单位月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为150元.(2)不获利,设该单位每月获利为元,则,因为,所以时取最大值,时取最小值,所以.故该工厂每月废气回收再利用不获利,月最大亏损额为27500元.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.21、(1)(2)【解析】(1)利用列举法求解即可;(2)利用列举法求解即可.【小问1详解】由题意,设4名志愿者为甲,乙,丙,丁,4天一轮的值班安排所有可能的结果是:(甲,乙,丙,丁),(甲,乙,丁,丙),(甲,丙,乙,丁),(甲,丙,丁,乙),(甲,丁,乙,丙),(甲,丁,丙,乙),(乙,甲,丙,丁),(乙,甲丁,丙),(乙,丙,甲,丁),(乙,丙,丁,甲),(乙,丁,甲,丙),(乙,丁,丙,甲),(丙,甲,乙,丁),(丙,甲,丁,乙),(丙,乙,甲,丁),(丙,乙,丁,甲),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,甲,丙,乙),(丁,乙,甲,丙),(丁,乙,丙,甲),(丁,丙,乙,甲),(丁,丙,甲,乙),共24个样本点设甲乙相邻为事件A,则事件A包含:(甲,乙,丙,丁),(甲,乙,丁,丙),(乙,甲,丙,丁),(乙,甲,丁,丙),(丙,甲,乙,丁),(丙,乙,甲,丁),(丙,丁,乙,甲),(丙,丁,甲,乙),(丁,甲,乙,丙),(丁,乙,甲,丙),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论