2026届山东省名校联盟新教材数学高一上期末联考模拟试题含解析_第1页
2026届山东省名校联盟新教材数学高一上期末联考模拟试题含解析_第2页
2026届山东省名校联盟新教材数学高一上期末联考模拟试题含解析_第3页
2026届山东省名校联盟新教材数学高一上期末联考模拟试题含解析_第4页
2026届山东省名校联盟新教材数学高一上期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届山东省名校联盟新教材数学高一上期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,集合,则集合A. B.C. D.2.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为()A. B.C. D.3.已知偶函数的定义域为,当时,,若,则的解集为()A. B.C. D.4.若和都是定义在上的奇函数,则()A.0 B.1C.2 D.35.若,则A. B.C. D.6.小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是A. B.C. D.7.的值为()A. B.C. D.8.圆过点的切线方程是()A. B.C. D.9.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,010.,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.写出一个周期为且值域为的函数解析式:_________12.集合的非空子集是________________13.已知定义在上的偶函数,当时,,则________14.计算:___________.15.点是一次函数图象上一动点,则的最小值是______16.圆关于直线的对称圆的标准方程为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是上的奇函数(1)求;(2)用定义法讨论在上的单调性;(3)若在上恒成立,求的取值范围18.已知函数(1)判断的奇偶性,并加以证明;(2)求函数的值域19.在△中,的对边分别是,已知,.(1)若△的面积等于,求;(2)若,求△的面积.20.设函数的定义域为,值域为,如果存在函数,使得函数的值域仍是,那么称是函数的一个等值域变换.(1)判断下列函数是不是函数的一个等值域变换?说明你的理由;①;②.(2)设的定义域为,已知是的一个等值域变换,且函数的定义域为,求实数的值.21.如图,在扇形OAB中,半径OA=1,圆心角C是扇形弧上的动点,矩形CDEF内接于扇形,且OE=OF.记∠AOC=θ,求当角θ为何值时,矩形CDEF的面积S最大?并求出这个最大的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】,所以,故选A.考点:集合运算.2、C【解析】先根据图象求出,得到的解析式,再根据整体代换法求出其对称中心,赋值即可得出答案【详解】由图可知,,,∴,∴当时,,即令,解得当时,可得函数图象的一个对称中心为故选:C.【点睛】本题主要通过已知三角函数的图像求解析式考查三角函数的性质,属于中档题.利用利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求是解题的关键.求解析式时,求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时.3、D【解析】先由条件求出参数,得到在上的单调性,结合和函数为偶函数进行求解即可.【详解】因为为偶函数,所以,解得.在上单调递减,且.因为,所以,解得或.故选:D4、A【解析】根据题意可知是周期为的周期函数,以及,,由此即可求出结果.【详解】因为和都是定义在上的奇函数,所以,,所以,所以,所以是周期为周期函数,所以因为是定义在上的奇函数,所以,又是定义在上的奇函数,所以,所以,即,所以.故选:A.5、D【解析】利用同角三角函数的基本关系,二倍角的余弦公式把要求的式子化为,把已知条件代入运算,求得结果.【详解】,,故选D.【点睛】本题主要考查同角三角函数的基本关系,二倍角的余弦公式的应用,属于中档题.6、C【解析】开机密码的可能有,,共15种可能,所以小敏输入一次密码能够成功开机的概率是,故选C【考点】古典概型【解题反思】对古典概型必须明确两点:①对于每个随机试验来说,试验中所有可能出现基本事件只有有限个;②每个基本事件出现的可能性相等.只有在同时满足①、②的条件下,运用的古典概型计算公式(其中n是基本事件的总数,m是事件A包含的基本事件的个数)得出的结果才是正确的7、A【解析】根据诱导公式以及倍角公式求解即可.【详解】原式.故选:A8、D【解析】先求圆心与切点连线的斜率,再利用切线与连线垂直求得切线的斜率结合点斜式即可求方程.【详解】由题意知,圆:,圆心在圆上,,所以切线的斜率为,所以在点处的切线方程为,即.故选:D.9、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性10、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据函数的周期性和值域,在三角函数中确定一个解析式即可【详解】解:函数的周期为,值域为,,则的值域为,,故答案为:12、【解析】结合子集的概念,写出集合A的所有非空子集即可.【详解】集合的所有非空子集是.故答案为:.13、6【解析】利用函数是偶函数,,代入求值.【详解】是偶函数,.故答案6【点睛】本题考查利用函数的奇偶性求值,意在考查转化与变形,属于简单题型.14、7【解析】直接利用对数的运算法则以及指数幂的运算法则化简即可.【详解】.故答案为:7.15、【解析】把点代入函数的解析式得到,然后利用基本不等式求最小值.【详解】由题意可知,又因为,所以,当且仅当即时等号成立所以的最小值是.故答案为:.16、【解析】两圆关于直线对称,则两圆的圆心关于直线对称,且两圆半径相同,由此求解即可【详解】由题,圆的标准方程为,即圆心,半径为,设对称圆的圆心为,则,解得,所以对称圆的方程为,故答案为:【点睛】本题考查圆关于直线对称的圆,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)是上的增函数;(3).【解析】(1)利用奇函数的定义直接求解即可;(2)用函数的单调性的定义,结合指数函数的单调性直接求解即可;(3)利用函数的奇函数的性质、单调性原问题可以转化为在上恒成立,利用换元法,再转化为一元二次不等式恒成立问题,分类讨论,最后求出的取值范围.【详解】(1)函数是上的奇函数即即解得;(2)由(1)知设,则故,,故即是上的增函数(3)是上的奇函数,是上的增函数在上恒成立等价于等价于在上恒成立即在上恒成立“*”令则“*”式等价于对时恒成立“**”①当,即时“**”为对时恒成立②当,即时,“**”对时恒成立须或解得综上,的取值范围是【点睛】本题考查了奇函数的定义,考查了函数单调性的定义,考查了指数函数的单调性的应用,考查了不等式恒成立问题,考查了换元法,考查了数学运算能力.18、(1)是奇函数;证明见解析(2)【解析】(1)首先确定定义域,根据奇偶性定义可得结论;(2)令,可求得的范围,进而可得的值域.【小问1详解】由得:,定义域为,关于原点对称;,,为奇函数;【小问2详解】令,且,,或,或,的值域为.19、(1);(2).【解析】(1)先根据条件可得到,由三角形的面积可得,与联立得到方程组后可解得.(2)由可得,分和两种情况分别求解,最后可得的面积为试题解析:(1)∵,,∴,∴,又,∴,∵△的面积,∴,由,解得.(2)由,得得,∴或①当时,则,由(1)知,,又∴.∴;②当时,则,代入,得,,∴.综上可得△的面积为.点睛:解答本题(2)时,在得到后容易出现的错误是将直接约掉,这样便失掉了三角形的一种情况,这是在三角变换中经常出现的一种错误.为此在判断三角形的形状或进行三角变换时,在遇到需要约分的情况时,需要考虑约掉的部分是否为零,不要随意的约掉等式两边的公共部分20、(1)①不是等值域变换,②是等值域变换;(2).【解析】(1)运用对数函数的值域和基本不等式,结合新定义即可判断①;运用二次函数的值域和指数函数的值域,结合新定义即可判断②;(2)利用f(x)的定义域,求得值域,根据x的表达式,和t值域建立不等式,利用存在t1,t2∈R使两个等号分别成立,求得m和n试题解析:(1)①,x>0,值域为R,,t>0,由g(t)⩾2可得y=f[g(t)]的值域为[1,+∞).则x=g(t)不是函数y=f(x)的一个等值域变换;②,即的值域为,当时,,即的值域仍为,所以是的一个等值域变换,故①不是等值域变换,②是等值域变换;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论