版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京市玄武区溧水中学2026届数学高二上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知为定义在R上的偶函数函数,且在单调递减.若关于的不等式在上恒成立,则实数m的取值范围是()A. B.C. D.2.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.3.德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点A、B是的ON边上的两个定点,C是OM边上的一个动点,当C在何处时,最大?问题的答案是:当且仅当的外接圆与边OM相切于点C时,最大.人们称这一命题为米勒定理.已知点P、Q的坐标分别是(2,0),(4,0),R是y轴正半轴上的一动点,当最大时,点R的纵坐标为()A.1 B.C. D.24.若,在直线l上,则直线l一个方向向量为()A. B.C. D.5.已知函数,若,,则实数的取值范围是A. B.C. D.6.若直线与圆只有一个公共点,则m的值为()A. B.C. D.7.已知圆与圆,则圆M与圆N的位置关系是()A.内含 B.相交C.外切 D.外离8.设函数,则曲线在点处的切线方程为()A. B.C. D.9.已知,若与的展开式中的常数项相等,则()A.1 B.3C.6 D.910.已知等差数列的公差,是与的等比中项,则()A. B.C. D.11.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.12.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.110二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则________.14.圆锥曲线的焦点在轴上,离心率为,则实数的值是__________.15.在数列中,,,,若数列是递减数列,数列是递增数列,则______16.已知双曲线,(,)的左右焦点分别为,过的直线与圆相切,与双曲线在第四象限交于一点,且有轴,则直线的斜率是___________,双曲线的渐近线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列{}的前n项和为,且2=3-3(n∈)(1)求数列{}的通项公式(2)若=(n+1),求数列{}的前n项和18.(12分)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F,G分别为线段AD,DC,PB的中点.(1)证明:直线PF//平面ACG;(2)求直线PD与平面ACG所成角的正弦值.19.(12分)求适合下列条件的双曲线的标准方程:(1)焦点坐标为,且经过点;(2)焦点在坐标轴上,经过点.20.(12分)已知三角形的三个顶点是,,(1)求边上的中线所在直线的方程;(2)求边上的高所在直线的方程21.(12分)如图,已知正四棱锥中,O为底面对角线的交点.(1)求证:平面;(2)求证:平面.22.(10分)已知数列的前项和为,且.(1)求的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】由条件利用函数的奇偶性和单调性,可得对恒成立,转化为且对恒成立.求得相应的最大值和最小值,从而求得的范围【详解】定义在上的函数为偶函数,且在上递减,在上单调递增,若不等式在上恒成立,即在上恒成立在上恒成立,即在上恒成立,即且在上恒成立令,则,,,,在上递增,上递减,令,当时,,在上递减,故可知,解得,所以实数m的取值范围是故选:C2、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C3、C【解析】由题意,借助米勒定理,可设出坐标,表示出的外接圆方程,然后在求解点R的纵坐标.【详解】因为点P、Q的坐标分别是(2,0),(4,0)是x轴正半轴上的两个定点,点R是y轴正半轴上的一动点,根据米勒定理,当的外接圆与y轴相切时,最大,由垂径定理可知,弦的垂直平分线必经过的外接圆圆心,所以弦的中点为(3,0),故弦中点的横坐标即为的外接圆半径,即,由垂径定理可得,圆心坐标为,故的外接圆的方程为,所以点R的纵坐标为.故选:C.4、C【解析】利用直线的方向向量的定义直接求解.【详解】因为,在直线l上,所以直线l的一个方向向量为.故选:C.5、A【解析】函数,若,,可得,解得或,则实数的取值范围是,故选A.6、D【解析】利用圆心到直线的距离等于半径列方程,化简求得的值.【详解】圆的圆心为,半径为,直线与圆只有一个公共点,所以直线与圆相切,所以.故选:D7、B【解析】将两圆方程化为标准方程形式,计算圆心距,和两圆半径的和差比较,可得答案,【详解】圆,即,圆心,圆,即,圆心,则故有,所以两圆是相交的关系,故选:B8、A【解析】利用导数的几何意义求解即可【详解】由,得,所以切线的斜率为,所以切线方程为,即,故选:A9、B【解析】根据二项展开式的通项公式即可求出【详解】的展开式中的常数项为,而的展开式中的常数项为,所以,又,所以故选:B10、C【解析】由等比中项的性质及等差数列通项公式可得即可求.【详解】由,则,可得.故选:C.11、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.12、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据导数的计算法则计算即可.【详解】∵,∴,∴∴.故答案为:2.14、【解析】根据圆锥曲线焦点在轴上且离心率小于1,确定a,b求解即可.【详解】因为圆锥曲线的焦点在轴上,离心率为,所以曲线为椭圆,且,所以,解得,故答案为:15、【解析】根据所给条件可归纳出当时,,利用迭代法即可求解.【详解】因为,,,所以,即,,且是递减数列,数列是递增数列或(舍去),,,故可得当时,,故答案为:16、①.②.【解析】由题意,不妨设直线与圆相切于点,由可得,代入双曲线方程,可得,因此,即得解【详解】如图所示,不妨设直线与圆相切于点,,由于代入进入,可得,渐近线方程为故答案为:,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)利用的关系可得,即可知为等比数列,写出等比数列通项公式即可.(2)由(1)得,利用错位相减求和法即可求出前n项和.【小问1详解】当时,,解得,当时,,则,即,又,则,∴,故是以为首项,以3为公比的等比数列,∴数列的通项公式为;【小问2详解】由(1)知,所以,所以①,则②,①-②,得,整理,得,,所以.18、(1)证明见解析(2)【解析】(1)连接EC,设EB与AC相交于点O,结合已知条件利用线面平行的判定定理可证得OG//平面PEF,再由三角形中位线定理结合线面垂直的判定定理可得AC//平面PEF,从而由面面垂直的判定可得平面PEF//平面GAC,进而可证得结论,(2)由已知可证得PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,利用空间向量求解即可【小问1详解】证明:连接EC,设EB与AC相交于点O,如图,因为BC//AD,且,AB⊥AD,所以四边形ABCE为矩形,所以O为EB的中点,又因为G为PB的中点,所以OG为△PBE的中位线,即OG∥PE,因为OG平面PEF,PE⊂平面PEF,所以OG//平面PEF,因为E,F分别为线段AD,DC的中点,所以EF//AC,因为AC平面PEF,EF⊂平面PEF,所以AC//平面PEF,因为OG⊂平面GAC,AC⊂平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因为PF⊂平面PEF,所以PF//平面GAC.【小问2详解】因为PA⊥底面ABCD,AB⊂平面ABCD,AD⊂平面ABCD,所以PA⊥AB,PA⊥AD,因为AB⊥AD,所以PA、AB、AD两两互相垂直,以A为原点,AB,AD,AP所在的直线为x轴,y轴,z轴,建立空间直角坐标系,如图所示:则A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,设平面ACG的法向量为,则,所以,令x=1,可得y=﹣1,z=﹣1,所以,设直线PD与平面ACG所成角为θ,则,所以直线PD与平面ACG所成角的正弦值为.19、(1);(2).【解析】(1)利用双曲线定义求出双曲线的实轴长即可计算作答.(2)设出双曲线的方程,利用待定系数法求解作答.【小问1详解】因双曲线的焦点坐标为,且经过点,令双曲线实半轴长为a,则有,解得,双曲线半焦距,虚半轴长b有,所以所求双曲线的标准方程为.【小问2详解】依题意,设双曲线的方程为:,于是得,解得:,所以所求双曲线的标准方程为.20、(1);(2)【解析】(1)先求出BC的中点坐标,再利用两点式求出直线的方程;(2)先求出BC边上的高所在直线的斜率,再利用点斜式求出直线的方程.【详解】(1)设线段的中点为因为,,所以的中点,所以边上的中线所在直线的方程为,即(2)因为,,所以边所在直线的斜率,所以边上的高所在直线的斜率为,所以边上的高所在直线的方程为,即【点睛】本题主要考查直线方程的求法,属于基础题.21、(1)证明见解析;(2)证明见解析.【解析】(1)根据给定条件,利用线面平行的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026浙江衢州职业技术学院高层次紧缺人才招聘32人笔试备考试题及答案解析
- 2026河南周口市川汇区政府专职消防员招聘18人笔试参考题库及答案解析
- 2026一季度重庆市属事业单位公开招聘242人笔试参考题库及答案解析
- 2026湖南怀化市溆浦县社会保险服务中心公益性岗位招聘考试备考试题及答案解析
- 2026新疆和瑞集团博乐大巴扎项目招聘1人笔试备考题库及答案解析
- 2026中国医学科学院药物研究所招聘23人笔试模拟试题及答案解析
- 2026年广丰区殡葬事业服务中心劳务派遣招聘笔试模拟试题及答案解析
- 2026年数据挖掘实战案例培训
- 2026重庆市属事业单位第一季度考核招聘高层次和紧缺人才310人笔试备考试题及答案解析
- 2026年工程地质钻探技术的质量控制方法
- 蒙古驾驶证考试题目及答案
- 头发白转黑课件
- 医院药剂科窗口服务规范化培训
- 家纺产品绿色生命周期管理
- 消化内镜治疗进修汇报
- 2025-2030塞尔维亚电力行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 设备日常点检管理制度
- QGDW11059.2-2018气体绝缘金属封闭开关设备局部放电带电测试技术现场应用导则第2部分特高频法
- (高清版)DB62∕T 25-3128-2017 定型台架绑扎预制箱梁钢筋骨架施工规程
- 电梯更换配件劳务合同(2篇)
- 冀人版四年级科学上册复习资料(分课)
评论
0/150
提交评论